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6- Multiple Views and Motion



Summary of contents:

• Multi-View Stereo depth estimation:

basic concepts of Multi-View Stereo (MVS), plane-sweep algorithm, modern approaches (CNNs)

• Estimating pixels motion (optical flow):
introduction to optical flow, some classical algorithms, modern approaches (CNNs), supervised vs 

unsupervised optical flow networks

These slides contains a mini-survey on the two topics. 

We will focus on the most important methods over which all the others are built upon, with these latter being reported for completeness



Student: "What are the three most important problems in computer vision?“

Takeo Kanade: “Correspondence, correspondence, correspondence!”



6.1- Multi-View Stereo



Multi-View depth estimation

Collecting N images around the scene (N >> 2), we can aim at full 3D reconstruction.
This would not be possible with binocular stereo matching (no visibility behind objects, etc)



Multi-View depth estimation

?



Multi-View depth estimation



Multi-View depth estimation

Multi-View Geometry (MVG) is a wide research area in computer vision.

Given N images, we deal with different tasks according to what we already know: 

• Structure-from-Motion (SfM)

We do not know either the camera position or
the 3D structure of the scene. We aim at estimating both

• Multi-View Stereo (MVS)
We know camera positions. We aimg at 

estimating the 3D structure of the scene

• Simultaneous Localization And Mapping (SLAM)
We do not know either the camera position or
the 3D structure of the scene. We aim at estimating both

in real-time

• …



Multi-View depth estimation

We focus on Multi-View Stereo which is,
on its own, a vast topic as well

In general, when dealing with MVS 3D

reconstruction, three main categories of 
approaches exist:

• Direct point cloud reconstructions (3D points)
• Volumetric reconstructions (voxels)

• Depth map reconstructions

The latter consists into estimating N depth maps, one for each image in the set being assumed as 
reference image, and then fusing them for the final 3D reconstruction. 

This results as the most scalable approach in terms of computational efforts – and closests to the others 

we have seen previously ☺



Multi-View depth estimation

Multi-View stereo depth estimation leverages epipolar geometry as well

However, in this case we cannot rectify images to obtain horizontal epipolar lines

???



Multi-View depth estimation

Why using multiple views (N>2)? To reduce ambiguity and occlusions (when possible)

? 

.
?

.



Multi-View depth estimation

Plane-sweep algorithm:by assuming that any 3D
point in the scene lays on a plane distant d from the

camera, we look for correspondences between
pixels in the reference image and those
along the epipolar lines in the target images  

Stereo Matching algorithms are a particular 
case of the plane-sweep approach, for which
epipolar lines are horizontal

A basic Multi-View Stereo algorithm can be implemented applying plane-sweep principles within the 
Semi-Global Matching pipeline (see OpenMVS)



Multi-View depth estimation

PatchMatch: randomized algorithm for matching patches
across two images

According go the law of large numbers, a non-trivial
subset of all the possible random assignments will be correct

Three steps:

• Initialization – assign random patches (offsets)
• Propagation – using spatial coherence (nearby patches in one

image should match with nearby patches on the second one)

• Random search – search for a random offset near the best patch

Repeat steps 2, 3 until convergence

How can this work? Given M patches, chance of selecting correct patch 1/M. Chance of selecting atleast
one correct patch p=1-(1-1/M)M (for 100K patches, p=~0.74). If we relax this to top C nearest neighbors, 

we get 1-(1-C/M)M (for C=2, p=~0.86. For C=3, p=~0.95)



Multi-View depth estimation

PatchMatchStereo: based on patchmatch.
Offset replaced by depth and normals

Assumption: the world is msotly made of almost planar surfaces

Three steps:
• Initialization – assign random depths and normals
• Propagation – using spatial coherence

• Random search – sample new random depths and normals,
refine initial estimate



Multi-View depth estimation

Given the analogies with binocular stereo, we may expect a similar trend in the literature :) 

Early attempts aimed at learning how to match patches [1] across N views

For each image patch in the reference image, a number of patches are sampled from the N-1 remaining 
views along the epipolar line. 

Two-view volumes are built from the reference image and any single remaining view. The N-1 volumes 
are accumulated by means of a weighted sum. The weights is given by the confidence estimated by a 

specific submodule.

Picture from [1]



Multi-View depth estimation

The learned matching function results 
more robust than hand-crafted alternatives

However, some outliers still remains, due to the high

ambiguities which cannot be explained withing a
local patch

To solve this, larger image content needs to be

taken into account. Solution: end-to-end networks!

Picture from [1]



MVSNet [2]

First end-to-end multi-view depth estimation network. Very similar to GCNet. Four main modules: 
1) Feature Extractor

2) Homography-based Cost Volume
3) Cost Volume Regularization
4) Depth Map Refinement

Picture from [2]



Picture from [2]

MVSNet [2]

Feature extractor

A 2D convNet extracting deep features at lower resolution (quarter), which will be used to measure pixels 
similarity. N instances are built to process N images (sharing the weights).



Picture from [2]

MVSNet [2]

Homography-based Cost Volume

A cost volume is built to measure pixels similarity. A single pixel in the reference image is compared to 
pixels in N-1 target views. Cost function: features variance



Multi-View depth estimation

By dividing the depth range into D bins, for any pixel in the reference image we recovered its
corresponding pixels in the N-1 target views.

This can be done by applying D homographies to warp the target views (i.e., assuming pixels to lay on a 
set of D planes, defined by the depth bins themselves). This is equivalent to searching for corresponding 

pixels along epipolar lines in the target views. To measure the similarity between the pixel in the 
reference image and its D tuples of N-1 candidates, the variance on the N pixels is performed at any bin.

The bin with the lowest variance corresponds to the depth hypothesis being most likely to be correct.

Reference image 

coordinates



Picture from [2]

MVSNet [2]

Cost Volume Regularization

A 3D convNet used to refine the cost volume, following UNet design. It requires high memory
consumptionand runtime. From the final output, an initial depth map is obtained through soft argmin (at 
quarter the input resolution)



Picture from [2]

MVSNet [1]

Depth Map Refinement

A 2D convNet used to refine the initial depth map, by predicting a residual to be summed to the initial 
prediction.



MVSNet [2]

Loss function

The network is trained by minimizing both the difference between the initial and refined depth maps with 
respect to the ground-truth

Probability map (aka confidence)

From the 3D convNet output, a confidence map can be obtained by computing the entropy over the 
probability distribution used to obtain the initial depth map

Picture from [2]



Multi-View depth estimation

Ablation experiments

• Left: Varying the number of input images has impact on the performance
• Right: The variance-based cost volume results better than possible alternatives such as patches 

mean. The refinement network has limited impact

Picture from [2]



Multi-View depth estimation

Point cloud fusion

Once a depth map has been on any image assumed as reference, they can be fused to obtain a 3D point 
cloud by reasoning on visibility and occlusions [3]

Picture from [2]



Recurrent cost-volume processing

Problem: 
3D convolutions are extremelyhigh memoryconsuming. Using 2D convolutions would reduce the 

receptive field to a single slice of the cost volume along depth dimension

Possible Solution:

Use a recurrent 2D convNet to process the cost volume

Picture from [4]



Recurrent cost-volume processing

Recurrent layers:
nodes processing data sequentially, by maintaining an internal memory (or state)

Recurrent NN (RNN)

short-term memory (suffers of vanishing gradients over longersequences)



Recurrent cost-volume processing

Gated RecurrentUnit (GRU) and Long-Short Term Memories (LSTM) are thought to overcome
the vanishing gradients problem

GRU adds reset and update gates LSTM also adds forget and output gates



R-MVSNet [4]

Architecture similar to MVSNet. The 3D networks used to regularize the cost volume is replaced by a 
recurrent 2D network.

Othe minor differences: 
pixels sampled in inverse depth space, network trained for multi-class classification followed by 

variational refinement

Picture from [4]



Coarse-to-fine processing

Problem: 
3D convolutions are extremelyhigh memoryconsuming.

Possible Solution:
Coarse-to-fine strategy to build smaller cost volumes

Single Stage Stage 1 Stage 2 Stage 3

Winner!

Winner!



CVP-MVSNet [5], CAS-MVSNet [6]

The feature extractor is designed to 
output several sets of features at 

different resolutions (from coarser to
finer).

Starting from the finest, a cost volume
is built and processed by the 3D convNet

to output an initial depth map.

Such depth map is upsampled and used

to guide cost-volume building at the higher
resolutions, until depth is estimated at

the highest resolution.

This sequential protocol allows for smaller

cost volumes, which are sequentially built
at finer levels.

Picture from [5]

Picture from [6]



Follow-ups

Several architectures have been built on the two, aforementioned strategies. Among them:

Recurrent cost-volume processing
D2HC-RMVSNet [7], AA-RMVSNet [8], … 

Picture from [7] Picture from [8]



Follow-ups

Several architectures have been built on the two, aforementioned strategies. Among them:

Coarse-to-fine strategies
UCSNet [9], PatchMatchNet [10], … 

In the interest of time, we won’t see them in detail – good candidates for the final assignment :)

Picture from [9] Picture from [10]



Self-supervised MVS

As for other depth-related tasks (stereo and mono), some works deal with self-supervised strategies.
However, occlusions are much more severe in this setting. Then, most approaches design some self-

training mechanism to improve supervision in occluded regions.

SS-CVP-MVSNet [11]

A framework built on top of CVP-MVSNet [5]

A 2-levels CVP-MVSNet is first trained with 
image synthesis losses (similarly to 
monodepth).

Then, the model is extended to 5 levels and 

used to distill pseudo-labels, fused across
the entire scene to render filtered labels.
A 2-level instance of CVP-MVSNet is 

fine-tuned on such labels.

This is repeated for a few iterations.
Picture from [11]



Self-supervised MVS

U-MVSNet [12]
A first instance of a MVSNet is trained with image synthesis losses + depth-flow consistency.

Then, a second stage is performed by self-training on the pseudo-labels produced by the model itself, by 
taking into account the uncertainty modeled with Monte-Carlo Dropout.

Picture from [12]



Multi-View Stereo with Transformers

TransMVSNet [13] applies principles from Transformers (intra and inter attention across features) to build 
a coarse-to-fine architecture.

Cost volumes are built by pair-wise features correlations, then combined as a weighted sum according 
to each pair-wise highest per-pixel correlation.

Picture from [13]



Multi-View Stereo with Transformers

Picture from [13]



6.2- Optical Flow



Optical Flow

With optical flow, we usually refer to the motion vectors connecting 
pixels coordinates in one image to the corresponding coordinates in 

a second (usually subsequent) one.

Motion field: projection of 3D motion into an image (real motion)

Optical Flow: motion of pixels in the image caused by brightness
changes (apparent motion)

Ideally, the two are the same. In practice: shadows, brightness consistency violation, etc.



Optical Flow

Let’s focus on motion field

Optical flow as motion field is consequence of two kinds of motion: 
camera motion (ego-motion) and independent motions (objects motion)

In both cases, the magnitude of flow vectors is also 

consequence of the distance from the camera
(with a given speed, an object closer to the camera
will produce flow vectors with higher magnitude)

Optical flow can be computed by knowing depth
and camera poses for static points in the scene



Challenges of Optical Flow

What makes optical flow hard as a matching problem?

Searchrange: 2D, potentially very large search space
Solution: coarse-to-fine strategies

Aperture problem: the lack of context can result in wrong motion estimation (consequence of 2D search)
Solution: wider context + spatial coherence (nearby pixels share the same motion)

Occlusions: pixels disappearing because of objects motion itself

Motion blur: blurring artefacts caused by high-speed motion
…



MPI-Sintel dataset

Optical flow in unconstrained conditions is extremely hard!



Optical Flow

Image derivatives

d
y

dx



Optical Flow

Lucas-Kanade algorithm is a differential method.
Let's assume we look at the scene through a square patch. At a certain

time frame, its intensity is a. After moving, its intensity increases to b.

We can apply this relationship to all pixels in the patch

We get a system with variables << equations. A compromise solution is obtained by solving the following 

2x2 system with least square principle



Optical Flow

Pre deep-learning methods (just a list, in the interest of time…)

Some classical algorithms: Lucas-Kanade (1981), Horn and Schunck (1981)
More recent methods: DeepFlow (2013), EpicFlow (2015), CPM (2016 – PatchMatch!), RICFlow (2017)

Most of them run coarse-to-fine estimation

The advent of deep learning revolutioned this field, both in terms of accuracy and speed



Optical Flow

Cost volume search
As for stereo matching (and MVS), we can directly

search for correspondences across the two images –
with deep learning, maybe? :)

We can compare each pixel (or patch) in the first image with a set 
of candidates in the second one

Unfortunately, this time our search domain
is 2D and can possiblybe huge!

This would lead to a 4D cost volume

(HxWxdHxdW, with dHxdW being the 
2D search range)

Such a data structure cannot be handled
on full resolution images (coarse-to-fine

strategies)



Optical Flow

Semantic Information and Deep Matching [14]

This work follows the trend started by Zbontar and 
LeCun with MC-CNN.

A siamese network processes 19x19 patches extracted
from the two images. Since optical flow demands much

more complexity (a single patch in the first image should
be compared with RxR patches in the second, in a 2D 
search range), a few heuristic are introduced:

• At training time, patches are matched along a single axis (vertical or horizontal)

• At test time, only top-K scores are kept (K=30) to save memory

Then, the top-K costs are refined through iterative local aggregation (box-filtering like).

Picture from [14]



Optical Flow

Semantic Information and Deep Matching [14]

This

Then, objects are detected and segmented by means of a CNN, to distuingish moving vehicles from the 

static background.

Finally, the optical flow initially estimated by the network is refined by means of hand-crafted algorithms 

modeling the motion of the scene for static and dynamicagents independelty**

**based on a pipeline combining RANSAC (to get fundamental matrices), SGM (to perform matching along epipolar lines) and more…

Picture from [14]



Optical Flow

Direct Cost volume optimization – DC-Flow [15]

A siamese network processes 9x9 patches extracted
from the two (downsampled by a factor 3) images

It computes similarity scores between a single patch
on the first frame and RxR patches in the second frame

(2D search range)

A 4D cost-volume is built and then refined by a variant of Semi-Global Matching (SGM) specifically 

designed to deal with 4D volumes, Flow-SGM. The downsampling factor allows to reduce the memory 
requirements by a factor 34!

The final flow is obtained through WTA and upsampledby a factor 3

With Vp, Vq being flow 

vectors hypotheses



Optical Flow

Results looks good, yet showing limitations in occlusions, large motions, …

… all aspects that can be dealt with an end-to-end model!



FlowNet [16]

First end-to-end optical flow estimation network. Two main components:

1) Features extractor (encoder)
2) Refinement module (decoder)

Two variants:

1) FlowNetS

2) FlowNetC (Correlation)

Picture from [16]



FlowNet [16]

CorrelationLayer: a module computing the correlation scores between features extracted from two
different images.

For a given pixel (i,j) in fB, this layer computes

correlation between it and k pixels in fA in a
neighborhood around (i,j).

The results are stored in a new features map

CAB (the k scores are encodedalong the
channels dimension)

Picture from [17]



FlowNet [16]

Still less effective than
existing solutions… 



Improving the accuracy with residual refinement

FlowNet2 [18], made of several instances of FlowNetC/S

1) A first FlowNetC, for large
displacements

2) Two FlowNetS, to compute

residual flow given the two
images and the first estimate
by FlowNetC

3) A further FlowNet for

small displacements (SD)

4) A final fusion module

Picture from [18]



Improving the accuracy with residual refinement

Picture from [15]



Coarse-to-fine processing

Problem: processing full-resolution images is expensive

Possible solution: coarse-to-fine processing!

SpyNet [19] computes optical flow on an image pyramid, starting from coarse resolution and going up 

until reaching full resolution. No explicit correlationbetweenpixels is computed.

Picture from [19]



Coarse-to-fine processing

PWCNet [20], LiteFlowNet[21]

Combine established design strategies:

• Pyramidal features extraction

• Cost-volume computation (correlation layer)
• Coarse-to-fine estimation

• Refinement

More: LiteFlowNet2 [22], 

IRR-PWCNet [23], LiteFlowNet3 [24], 
… – good candidates for the 

final assignment :)

Picture from [20]

Picture from [21]



Volumetric representation

VCN [25], DICL [26]

A volumetric representation of the
matching costs is more powerful 
(offset invariance, more general in terms of

search windows size). However, for optical flow 
the cost volume would be a 5D features tensor

and require 4D convolutions! So, some efficient
strategies to avoid 4D convolutions are necessary:

• VCN: Separable 4D conv

splits a 4D conv into a 2D conv + 2D WTA

• DICL: 2D matching cost net

a 2D network processes each «slice» of
the 4D volume separately

Picture from [25]

Picture from [26]



RAFT [27]

Iterative optimization, inspired by
traditional methods for estimating optical flow

After extracting features from both
images, a correlation look-up table (LUT) 

is built, storing the correlation scores among all pairs
across the two images (HxW x HxW)

Then, optical flow is iteratively estimated by looking
at the look-up table and to some context features

For pixel (i,j) with an initial flow estimate of (u,v), the

look-up table is queried at (i+u, j+v) at multiple scales

An updated flow vector (u’,v’) is estimated, to access

to the LUT again and refine it again and again…

LUT scores and context features are processed by GRUs
Picture from [https://www.youtube.com/watch?v=r3ZtW30exoo]

Picture from [27]



Decomposing 2D flow into 1D flows

SeparableFlow [28], Flow1D [29]

Using a 4D representation while reducing complexity (see VCN and DILC). 

In the interest of time, we won’t see them in detail – good candidates for the final assignment :)

Picture from [28]

Picture from [29]



Follow-ups

More recent architectures:

GMFlowNet [30], DEQ [31], CRAFT [32], … 

In the interest of time, we won’t see them in detail – good candidates for the final assignment :)

Picture from [30]

Picture from [31]

Picture from [32]



Self-supervised Optical Flow

As for other matching-based tasks (stereo and MVS), some works deal with self-supervised strategies.

Optical flow estimation as an image
reconstruction task, by using estimated flow 
to reconstruct It from It+1 (as seen with stereo)

Challenges: occlusions, light changes,
shadows from moving objects, …

Best practices: [33]
State-of-the-art: [34]

Picture from [34]



Self-supervised Optical Flow

SMURF [34]: RAFT variant designed for self-supervised optical flow

Two main factors:
• Crop augmentation – warping performed on full resolution images (handling out of image content)
• Occlusions inpainting – a dedicated, per-frame model si trained to inpaint occlusions (generating 

proxy labels) by inverting the backward flow

Pictures from [34]
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