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6- Multiple Views and Motion




Summary of contents:

* Multi-View Stereo depth estimation:
basic concepts of Multi-View Stereo (MVS), plane-sweep algorithm, modernapproaches (CNNs)

« Estimating pixels motion (optical flow):
introduction to optical flow, some classical algorithms, modernapproaches (CNNs), supervised vs
unsupervised optical flow networks

These slides contains a mini-survey on the two topics.
We will focus on the most important methods over which all the others are built upon, with these latter being reported for completeness



Student: "Whatare the three mostimportant problemsin computer vision?“

Takeo Kanade: “Correspondence, correspondence, correspondence!”




6.1- Multi-View Stereo




Multi-View depth estimation

Collecting N images around the scene (N >> 2), we can aim at full 3D reconstruction.
This would not be possible with binocular stereo matching (no visibility behind objects, etc)
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Multi-View depth estimation




Multi-View depth estimation




Multi-View depth estimation

Multi-View Geometry (MVG) is a wide researcharea in computer vision.
Given N images, we deal with differenttasks according to what we already know:

« Structure-from-Motion (SfM) B
We do not know either the camera position or S
the 3D structure of the scene. We aim at estimating both .

* Multi-View Stereo (MVS)
We know camera positions. We aimg at
estimating the 3D structure of the scene

« SimultaneousLocalization And Mapping (SLAM)
We do not know either the camera position or
the 3D structure of the scene. We aim at estimating both
in real-time




Multi-View depth estimation

We focus on Multi-View Stereo which is,
on its own, a vast topic as well

In general, when dealing with MVS 3D
reconstruction, three main categories of
approaches exist:

» Direct point cloud reconstructions (3D points)
* Volumetric reconstructions (voxels)
« Depth map reconstructions

The latter consists into estimating N depth maps, one foreach image in the set being assumed as
referenceimage, and then fusing them for the final 3D reconstruction.

This results as the most scalable approach in terms of computational efforts —and closests to the others
we have seen previously ©



Multi-View depth estimation

Multi-View stereo depth estimation leverages epipolar geometry as well

However, in this case we cannot rectify images to obtain horizontal epipolar lines
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Multi-View depth estimation

Why using multiple views (N>2)? To reduce ambiguity and occlusions (when possible)




Multi-View depth estimation

Plane-sweep algorithm: by assuming that any 3D
pointin the scene lays on a plane distant d from the
camera, we look forcorrespondences between
pixels in the reference image and those

along the epipolarlines in the target images

Stereo Matching algorithms are a particular
case of the plane-sweep approach, forwhich
epipolarlines are horizontal

Reference Image

A basic Multi-View Stereo algorithm can be implemented applying plane-sweep principles within the
Semi-Global Matching pipeline (see OpenMVS)




Multi-View depth estimation

PatchMatch: randomized algorithm for matching patches
across two images

According go the law of large numbers, a non-trivial
subsetof all the possible random assignments will be correct

Three steps:

» Initialization — assign random patches (offsets) :

* Propagation —using spatial coherence (nearby patchesin one
image should match with nearby patches on the second one) El —

« Random search —search fora random offsetnear the bestpatch -

N
oy

Repeatsteps 2, 3 until convergence

How can this work? Given M patches, chance of selecting correct patch 1/M. Chance of selecting atleast
one correct patch p=1-(1-1/M)M (for 100K patches, p=~0.74). If we relax this to top C nearest neighbors,
we get 1-(1-C/M)M (for C=2, p=~0.86.For C=3, p=~0.95)



Multi-View depth estimation

PatchMatch Stereo: based on patchmatch.
Offsetreplaced by depth and normals

Assumption: the world is msotly made of almost planar surfaces

Three steps:
Initialization — assign random depths and normals
Propagation —using spatial coherence

Random search —sample new random depths and normals,

refine initial estimate

»

disparities




Multi-View depth estimation

Given the analogies with binocular stereo, we may expecta similar trend in the literature :)

Early attempts aimed at learning how to match patches [1] across N views
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Picture from[1]

For eachimage patch in the referenceimage, a number of patches are sampled fromthe N-1 remaining
views along the epipolar line.

Siamese
network

Reference view | |mage Costjvolume
Multiplezview sampler
£ —Q— [ Confidence
SRRE— - . estimation network

N warped image

RTK Other view
Camera parameter

Two-view volumes are built from the reference image and any single remaining view. The N-1 volumes
are accumulated by means of a weighted sum. The weights is given by the confidence estimated by a

specificsubmodule.




Multi-View depth estimation

The learned matching function results
more robust than hand-crafted alternatives

However, some outliers still remains, due to the high
ambiguities which cannot be explained withing a
local patch

To solve this, largerimage content needs to be
taken into account. Solution: end-to-end networks!

(e) SIFT




MVSNet [2]

First end-to-end multi-view depth estimation network. Very similar to GCNet. Four main modules:

1) Feature Extractor

2) Homography-based CostVolume

3) CostVolume Regularization
4) Depth Map Refinement
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MVSNet [2]

Featureextractor

A 2D convNet extracting deep features at lower resolution (quarter), which will be used to measure pixels
similarity. N instances are built to process Nimages (sharing the weights).
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MVSNet [2]

Homography-based CostVolume

A costvolume is built to measure pixels similarity. A single pixel in the referenceimage is compared to
pixels in N-1 target views. Cost function: features variance
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Multi-View depth estimation

By dividing the depth range into D bins, for any pixel in the reference image we recoveredits
corresponding pixels in the N-1 target views.

This can be done by applying D homographies to warp the target views (i.e., assuming pixels to lay on a
set of D planes, defined by the depth bins themselves). This is equivalent to searching for corresponding
pixels along epipolar lines in the target views. To measure the similarity betweenthe pixel in the
reference image and its D tuples of N-1 candidates, the variance on the N pixels is performed atany bin.

The bin with the lowest variance correspondsto the depth hypothesis being mostlikely to be correct.

Reference image
coordinates




MVSNet [2]

CostVolume Regularization

A 3D convNet used to refine the costvolume, following UNet design. It requires high memory
consumptionand runtime. From the final output, an initial depth map is obtained through soft argmin (at
guarter the input resolution)
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MVSNet [1]

Depth Map Refinement

A 2D convNet used to refine the initial depthmap, by predicting a residual to be summed to the initial
prediction.
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MVSNet [2]

Loss function

The network is trained by minimizing both the difference betweenthe initial and refined depth maps with
respectto the ground-truth

Loss= »  |ld(p) = di(p)|i+A- |d(p) —d-(p)]1

PEPwvalid

LDSSO Lossl

Probability map (aka confidence)

Fromthe 3D convNet output, a confidence map can be obtained by computing the entropy overthe
probability distribution used to obtaln the initial depth map

LY .

° ¢ s T 3 g
(a) Reference image (b) Inferred depth map (c) Probability distribution (d) Probability Map

Picture from [2]




Multi-View depth estimation

Ablation experiments

« Left: Varying the number of input images has impact on the performance
» Right: The variance-based cost volume results better than possible alternatives such as patches
mean. The refinement network has limited impact
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Multi-View depth estimation

Point cloud fusion

Once a depth map has been on any image assumed as reference, they can be fused to obtaina 3D point
cloud by reasoning on visibility and occlusions [3]
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(a) Inferred depth map (b) Filtered depth map (c) GT depth map

(e) Fused point cloud (f) GT point cloud

(d) Reference image

Picture from [2]



Recurrent cost-volume processing

Problem:
3D convolutions are extremely high memory consuming. Using 2D convolutions would reduce the
receptive field to a single slice of the costvolume along depth dimension

Possible Solution:
Use a recurrent 2D convNet to process the costvolume

Required Memory: H x W

(a) Winner-take-all (b) Spatial Regularization (c) Recurrent Regularization (Proposed) (d) 3D CNNs Regularization

Picture from [4]



Recurrent cost-volume processing

Recurrentlayers:
nodes processing data sequentially, by maintaining an internal memory (or state)

Recurrent NN (RNN)

o,A

(= o - input vector (m x 1).

hees he f; - hidden layer vector (n x 1).

> o3 : output vector (n x 1). he = Uh[ﬂ:t) = Uh[Uh-TE + Vihi—1 + bh-,)
[tanh | by, : bias vector (n x 1).

U, W : parameter matrices (n x m). 0f = cry[ag) = Jy[Wyhg + by )

V : parameter matrix (n x n).

= oy, 7, activation functions.

Xy

short-term memory (suffers of vanishing gradients overlonger sequences)




Recurrent cost-volume processing

Gated Recurrent Unit (GRU) and Long-Short Term Memories (LSTM) are thought to overcome

the vanishing gradients problem

h : hidden layer vectors.
G R U ¢ : input vector.
: b.,b,, by :bias vector.

W, , W, , W}, : parameter matrices.

Ct—l

LSTM

hy , Cy - hidden layer vectors.

; © input vector.

by, b;,be, b, : bias vector.

Wg, W, , W, , W, : parameter matrices.

(4 o, tanh : activation functions.

o, tanh : activation functions.
(W - [y 1, ] + be)

a (W (i1, ] + by)

ht—l

o

fg = O'U’Vf . [h-;fl,.’rz] + bf)

it = J(Tr‘Vg' . [l‘l-t_‘l,.'rg] + bg)

:Flg = tanh(“’% . [?"g [O] 111_1,1‘1] + bh)

he = (1 — Z:) @ hi—1 + a0 irlg

GRU addsresetand update gates

+
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LSTM also adds

he
= GU’VO - [he=1, 2] + bo)

Ci = tanh(We - [he—1, 2] + be)
Ci=fi®Cioy+ir @ Ch

ht = op @ tanh(Cy)

and output gates




R-MVSNet [4]

Architecture similar to MVSNet. The 3D networks used to regularize the costvolume is replaced by a
recurrent 2D network.

Othe minor differences:
pixels sampled in inverse depth space, network trained for multi-class classification followed by

variational refinement
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Picture from [4]




Coarse-to-fine processing

Problem:

3D convolutions are extremely high memory consuming.

Possible Solution:

Coarse-to-fine strategyto build smaller costvolumes
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CVP-MVSNet [5], CAS-MVSNet [6]
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T
Follow-ups

Several architectures have been built on the two, aforementioned strategies. Among them:

Recurrentcost-volume processing
D2HC-RMVSNet[7], AA-RMVSNet[8], ...
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Follow-ups

Several architectures have been built on the two, aforementioned strategies. Among them:

Coarse-to-finestrategies
UCSNet [9], PatchMatchNet [10], ...

_________ Predicting depth probability (Sec. 3. 3)r ‘, .
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i
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Picture from[9] Picture from [10]

In the interest of time, we won'’t see them in detail — good candidates for the final assignment:)




Self-supervised MVS

As for other depth-related tasks (stereo and mono), some works deal with self-supervised strategies.
However, occlusions are much more severe in this setting. Then, mostapproaches designsome self-

training mechanism to improve supervisionin occludedregions.

Self-training (lteration 1)

SS-CVP-MVSNet [11]
A framework built on top of CVP-MVSNet [5]

Multi-view Pseudo Label Fusion
Pseudo Point Cloud Pseudo Mesh

foa

Unsupervised spar £
Initialization — S

A 2-levels CVP-MVSNetis first trained with =1 e e
image synthesis losses (similarly to — - "‘ﬁ”
monodepth). s v

Then, the modelis extendedto 5 levels and
used to distill pseudo-labels, fused across
the entire scene to render filtered labels.

A 2-level instance of CVP-MVSNetis
fine-tuned on such labels.

Low resolution
Training Images

This is repeated for a few iterations.

Self-training (lteration 2)
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Picture from[11]




Self-supervised MVS

U-MVSNet[12]

A firstinstance of a MVSNet is trained with image synthesis losses + depth-flow consistency.
Then, a second stage is performed by self-training on the pseudo-labels produced by the modelitself, by

taking into account the uncertainty modeled with Monte-Carlo Dropout.

Photometric
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Multi-View Stereo with Transformers

TransMVSNet [13] applies principles from Transformers (intra and inter attention across features)to build
a coarse-to-fine architecture.

Costvolumes are built by pair-wise features correlations, then combined as a weighted sum according
to each pair-wise highest per-pixel correlation.

Feature Matching Transformer
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Depth Map

Picture from[13]




Multi-View Stereo with Transformers

2r 3r

CasMVSNet EPP-MVSNet AA-RMVSNet Ours

Picture from [13]



6.2- Optical Flow




R
Optical Flow

With optical flow, we usually referto the motion vectors connecting
pixels coordinates in one image to the corresponding coordinates in
a second (usually subsequent) one.

Motion field: projectionof 3D motioninto an image (real motion)
Optical Flow: motion of pixels in the image caused by brightness
changes (apparent motion)




T
Optical Flow

Let's focus on motion field

Optical flow as motion field is consequence of two kinds of motion:
cameramotion (ego-motion) and independent motions (objects motion)

In both cases, the magnitude of flow vectorsis also
consequence of the distance fromthe camera ;
(with a given speed, an objectcloserto the camera -

will produce flow vectors with higher magnitude)

Optical flow can be computed by knowing depth
and camera poses for static points in the scene




Challenges of Optical Flow

What makes optical flow hard as a matching problem?

Searchrange: 2D, potentially very large search space
Solution: coarse-to-fine strategies

Aperture problem: the lack of context can result in wrong motion estimation (consequence of 2D search)
Solution: wider context + spatial coherence (nearby pixels share the same motion)

/ Actual motion
Perceived motion

Occlusions: pixels disappearing because of objects motionitself

Motion blur: blurring artefacts caused by high-speed motion




MPI-Sintel dataset

Optical flow in unconstrained conditions is extremely hard!
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Optical Flow

Image derivatives




Optical Flow

: : : . k
Lucas-Kanade algorithm is a differential method. mﬁ@_,_ increasing brightness
Let's assume we look at the scene through a square patch. At a certain |

time frame, its intensity is a. Aftermoving, its intensity increases to b. . . .
increasing brightness

v
I(r,y)-u+ Lz,y)-v=—Lxy) movement _.u_é
mask

We can apply this relationship to all pixels in the patch

=

L(q)Ve + Iy(a1)
I (q2) Ve + Iy(q2)

y = —Li(q1) [L(q1) Ty(m)] [~ 1(q1) |

y = —1i(q) L(g) 1,(q) V. ~L(g)
Av=1> A ' v{ } .
: : V, :

Iz [Qn)p;: + Iy(Qﬂ)p;' = _IE(QH)

=

[ L(qn)  1y(gn) | | —1:(gn) |

We get a systemwith variables << equations. A compromise solutionis obtained by solving the following
2x2 systemwith leastsquareprinciple

ATA'U = ATb or [fo] _ [ E:‘ Is{‘i'i)z Zé I; (“I:‘ }Iy('i'f)} o [— E;' Iw(?ﬁ]ft (ffa)]
E:‘ Iy(?ﬁ)fr('ﬁ] Ei. Iy(qijg

v=(ATA)1ATb

1“;’ _Zi Iy (q:'}rt(qi)
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Optical Flow

Pre deep-learning methods (just a list, in the interest of time...)

Some classical algorithms: Lucas-Kanade (1981), Horn and Schunck (1981)
More recent methods: DeepFlow (2013), EpicFlow (2015), CPM (2016 — PatchMatch!), RICFlow (2017)

Most of them run coarse-to-fine estimation

Pyramid level Pyramid level
1. Calculation of optical _
Level 2 ! — flow on level 2 _ tevel:2
= - )

Level 1 - 2. Calculation of optical _ Level 1
g flow on level1 g

Level O Level O
3. Calculataon of optical ‘
flow on level0 '

Framei Final result Framei+1

The advent of deep learning revolutioned this field, both in terms of accuracy and speed



Optical Flow

Costvolumesearch

As for stereo matching (and MVS), we can directly
search for correspondences across the two images —
with deep learning, maybe?:)

We can compare each pixel (or patch) in the firstimage with a set
of candidates in the second one

Unfortunately, this time our search domain
is 2D and can possiblybe huge!

This would lead to a 4D costvolume
(HXWxdHxdW, with dHxdW being the
2D searchrange)

Such a data structure cannot be handled
on full resolutionimages (coarse-to-fine
strategies)




Optical Flow

Semantic Information and Deep Matching [14]

Filter 3x3 Fnlter 3x3 Filter 3x3 Filter 3x3

This work follows the trend started by Zbontar and " 2 I’ 2 o B .
LeCun with MC-CNN. |

c> -

128x1x1

h‘ﬂlt
|

.

Dimension: 201

Patch 19x19 32x17x17 64x15x15 128x3x3

A siamese network processes 19x19 patches extracted I ﬂ l/ I/ ,

from the two images. Since optical flow demands much .
more complexity (a single patch in the first image should .10 ® samerr ssasas A

be compared with RxR patches in the second,in a 2D Fcture from [14]
searchrange), a few heuristic are introduced:

128x1x201

« Attraining time, patches are matched along a single axis (vertical or horizontal)
» Attesttime, only top-K scores are kept (K=30) to save memory

Then, the top-K costs are refined through iterative local aggregation (box-filtering like).




Optical Flow

Semantic Information and Deep Matching [14]

Lo Bl Rd

Picture from [14]

Then, objects are detected and segmented by means of a CNN, to distuingish moving vehicles fromthe
static background.

Finally, the optical flow initially estimated by the network is refined by means of hand-crafted algorithms
modeling the motion of the scene for static and dynamic agents independelty**

**hased on a pipeline combining RANSAC (to get fundamental matrices), SGM (to performmatching along epipolar lines) and more...




Optical Flow
Direct Costvolume optimization — DC-Flow [15] Similrly wonrs
| Dat product I
A siamese network processes 9x9 patches extracted : Jormaioe : : Lormnie :
fromthe two (downsampled by a factor 3) images ; ;
| Convolution, ReLU | | Convolution, ReLU |
I | | |

Convolution, Rel.U Convolution, RelL.U

It computes similarity scores betweena single patch
on the first frame and RxR patches in the second frame

(2D searchrange)

Left input patch Right input patch

A 4D cost-volume is built and then refined by a variant of Semi-Global Matching (SGM) specifically
designed to deal with 4D volumes, Flow-SGM. The downsampling factor allows to reduce the memory
requirements by a factor 34!

E(V) =Z( S PV, -Vl =1]

N WithV,, V, being flow
+ 3 BRIV, -V, > 1]+C(p,vp)) vectors hypotheses
qEN(p)

The final flow is obtained through WTA and upsampled by a factor 3



Optical Flow

Input

DC Flow Ground truth

Error

Results looks good, yet showing limitations in occlusions, large motions, ...

... all aspects that can be dealt with an end-to-end model!




FlowNet [16]

First end-to-end optical flow estimation network. Two main components:

1) Features extractor (encoder) FlowNetSimple

2) Refinementmodule (decoder) i

Two variants:

FlowNetCorr

-
. 56 512 512 512 512 %‘
- R

1) FlowNetS
2) FlowNetC (Correlation)

22 2
¥ 473

Picture from [16]




T
FlowNet [16]

Correlation Layer: a module computing the correlation scores between features extracted from two
differentimages.

For a given pixel (i,j) in fg, this layer computes
correlation betweenit and k pixelsin f, in a
neighborhood around (i,)).

correlation
layer

The results are stored in a new features map
C,g (the k scores are encodedalong the
channels dimension)

w X h X (wxh)

Picture from[17]




FlowNet [16]

Still less effective than
existing solutions...

Ground truth EpicFlow

Ground truth EpicFlow FlowNetS FlowNetC
= = PE- 13.62 T B D
ﬁ\ -‘ ‘ ; .
. ’

EPE- 32.56 EPE: zo.sﬂ EPE: 26.63

'

= ot
b

EPE: 24.98 EPE: 35.33 EPE: 46.68



Improving the accuracy with residual refinement

FlowNet2 [18], made of several instances of FlowNetC/S

1) Afirst FlowNetC, forlarge
displacements

FlowNetC FlowNetS FlowNetS

Flow
Magnitude] =~

Image 1

2) Two FlowNetS, to compute —> | P —>| P ment R I
residual flow given the two e Fui= g
images and the first estimate — > M —| Fow
by FlowNetC Tomeo1 hisgrind

Flow
3) A further FlowNet for Image 2 o]
small displacements (SD) e from

4) A final fusion module




Improving the accuracy with residual refinement

FlowFields [2] PCA-Flow [32] FlowNetS [10] FlowNet2
(22,810ms) (140ms) (18ms) (123ms)

Image Overlay Ground Truth

Epaﬁ‘ig[ ' EPE:7.71 H EPEm

-.l)l ﬁ

Picture from [15]




Coarse-to-fine processing

Problem: processing full-resolutionimages is expensive
Possible solution: coarse-to-fine processing!

SpyNet[19] computes optical flow on an image pyramid, starting from coarse resolutionand going up
until reaching full resolution. No explicit correlation between pixels is computed.

vz
m d
Iz
Iz

Picture from[19]




Coarse-to-fine processing

PWCNet [20], LiteFIowNet[21] p:i:[tl‘:i‘;iel p:::ﬁ;:z "v:‘ """""""""""" ; Upsampled flow
o C I . ? ¥
Combine established design strategies: ‘ i i Warpnglaver
v
H H """l """" 4--_1 i ost volume layer
« Pyramidal features extraction o e - ¢ li layer_|
« Cost-volume computation (correlation layer)

Optical flow estimator I‘—

 Coarse-to-fine estimation
+ Refinement

IRR-PWCNet[23], LiteFlowNet3 [24],
... —good candidates for the
final assignment:)

l‘
More: LiteFlowNet2 [22], m»

Picture from [21]




-]
Volumetric representation

Stage 1: Cost Volume Construction Stage 2: Processing Stage 3: Soft Selection
VCN [25], DICL [26] : e R U1 U L

, , S e — \ — Hm-
A volumetric representation of the | st | mEabon v Q.H.iif"?x,(li WXk
matching costs is more powerful I 9|
(ffsetinvariance, more generalinterms of Lo o - s, 8o M
search windows size). However, for optical flow R S W _ 4
the costvolume would be a 5D features tensor G\ 1.
and require 4D convolutions! So, some efficient Nt chae R o Vo | Trmeated Sotwegmin Fin rdcton
strategies to avoid 4D convolutions are necessary: et from [22]
« VCN: Separable 4D conv — me

o Invariant
Cost Learning

splits a4D conv into a 2D conv + 2D WTA s e [ e — [

 DICL: 2D matching costnet
a 2D network processes each «slice» of

’ ‘ Warping
| ‘ 7

N
'
L ’
Pyramid Feature Upsampled

the 4D volume separately E _ s

Picture from [26]



e
RAFT [27]

Iterative optimization, inspired by
traditional methods for estimating optical flow

After extracting features from both

images, a correlationlook-up table (LUT)

is built, storing the correlation scores among all
across the two images (HxXW x HxW)

B
Sy

L s
Optical Flow

Picture from [27]

Then, optical flow s iteratively estimated by looking
at the look-up table and to some context features HH HH

Image 1

For pixel (i,)) with an initial flow estimate of (u,v), the
look-up table is queried at (i+u, j+Vv) at multiple scales

An updated flow vector (U',Vv’) is estimated, to access o
to the LUT again and refine it again and again... Image 2 o |

LUT scores and context features are processed by GRUs

Picture from [https://www.youtube.comivatch?v=r3Zt\W30exo0]




Decomposing 2D flow into 1D flows
SeparableFlow [28], Flow1D [29]

Using a 4D representation while reducing complexity (see VCN and DILC).
In the interest of time, we won’t see them in detail — good candidates for the final assignment:)

Feature -

Extraction

Separable Flow Module Picture from [28]

Picture from [29]




Follow-ups

More recent architectures:

GMFlowNet [30], DEQ[31], CRAFT[32], ...

1. Large Context Feature Extraction

Patch-based Overlapping Attention (POLA)

o

] 2. Global Matching

ing to Flow

==
i Ff‘ j-. -~ ? &) ;

- &’Fz

"
Lo
{

-----.i- -

Picture from[30]

Feature Network
Frame i Context Network
- q‘

— Forward

I ", 4 2 ke |
Frame i 4D Correlation Volumes o= Backward Deep supervision: L(fl!, &) for t < L | t‘
u’ Anderson solve - = |
E < pL] |4 L]
£01 s (10 )

Frame i + 1

< a1 1
L

i ﬂ L-step ConvGRU
[ P l: T .
1 x=(a.0)

Recurrent (Unrolled) Flow
(Forward: Iterative unrolling: Backward: BPTT

Naive solver (= oc-step ConvGRU)

x=(q,C)
DEQ Flow (ours)

Correlation + Context Modules (Forward: Any solver; Backward: IFT (+inexact gradient)

Picture from [31]

Picture from [32]

In the interest of time, we won'’t see them in detail — good candidates for the final assignment:)



Self-supervised Optical Flow

As for other matching-based tasks (stereo and MVS), some works deal with self-supervised strategies.

Optical flow estimation as an image Iy It I,

reconstructiontask, by using estlmf_ited flow broject ot P e

to reconstructl, from|l,,, (as seen with stereo) (-"'""—_T(u,v} — ﬁ — ~
pt pg"' ps pgl pt‘

Challenges: occlusions, light changes,

shadows from moving objects, ...

Best practices: [33]
State-of-the-art: [34]

ol

e W0 RS

 cfmm=

Picture from [34]



Self-supervised Optical Flow

SMURF [34]: RAFT variant designedfor self-supervised optical flow

Two main factors:
« Cropaugmentation —warping performedon full resolution images (handling out of image content)
« Occlusionsinpainting — a dedicated, per-frame model si trained to inpaint occlusions (generating
proxy labels) by inverting the backward flow

Imaget Predicted flow

Tiny per frame model

Warp 2->1 (full)

Flowtt-1

L ' ~ fiy: ‘.". ; T e T Flow extends beyond
-~ & o o e | o cropped boundary

Image x, y coordinates Prediction Occlusion-inpainted flowt-ts1 Pictures from[34]
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