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“Given a single RGB image as input, predict a 
dense depth map for each pixel ”  

Monocular Depth Estimation



AR/VR

Monocular Depth Estimation - Motivation

Surveillance System

● Using two or more cameras to triangulate the depth of the scene, although it 
increases the accuracy, it also adds more complexity:  the cameras have to be 
constantly recalibrated due to the movement of the autonomous car or robot.

● Monocular techniques are an attractive solution for all those low-cost or portable 
applications where the use of multiple cameras would be too costly or cumbersome

Medical Application



Perspective Projection
● The image formation process deals with mapping a 3D space onto a 2D space
● Indeed, the mapping is not a bijection
● Estimating depth from a single image is an ill-posed problem  



Perceiving 3D from 2D

● Humans excel at this task  



Perceiving 3D from 2D

● Meaningful monocular cues:

❏ Linear Perspective

“Linear perspective is a depth cue that utilizes the fact that lines converge in the 
distance. That is, parallel lines will get “closer together” or narrower as they 
appear farther from the viewer.” 



Perceiving 3D from 2D

● Meaningful monocular cues:

❏ Linear Perspective
❏ Relative Size

“Closer objects appears larger than objects further away. Therefore, if two 
objects are expected to be the same size, then the larger object will appear 
closer” 



● Meaningful monocular cues:

❏ Linear Perspective
❏ Relative Size
❏ Interposition

Perceiving 3D from 2D

“Interposition involves objects that appear to be coming inbetween the viewer 
and another object. If an object is interfering with, or overlapping the sight of the 
second object, it is perceived closer ” 



● Meaningful monocular cues:

❏ Linear Perspective
❏ Relative Size
❏ Interposition
❏ Texture Gradient

Perceiving 3D from 2D

“When you're looking at an object that extends into the distance, such as a grassy 
field, the texture becomes less and less apparent the farther it goes into the 
distance” 



● Meaningful monocular cues:

❏ Linear Perspective
❏ Relative Size
❏ Interposition
❏ Texture Gradient
❏ Height in plane

Perceiving 3D from 2D

“In a picture, objects that are further from the viewer appear higher in the visual 
field. Likewise, lower objects suggest that they are closer to the viewer.” 



● Meaningful monocular cues:

❏ Linear Perspective
❏ Relative Size
❏ Interposition
❏ Texture Gradient
❏ Height in plane
❏ Light and Shadow

Perceiving 3D from 2D

“Patterns of light and dark can create the illusion of a three dimensional figure. 
This concept can be useful in judging distance.” 
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    time t
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● Additional powerful depth cues arise when a scene is viewed from multiple 
vantage points

Binocular Stereo
Viewpoint 1
    time t

Viewpoint 2
   time t+1Motion Parallax

t+1t



● Monocular cues don’t always help:

Optical illusions



Optical illusions

● Ponzo illusion (human mind judges an object's size based on its background)

https://www.eruptingmind.com/depth-perception-cues-other-forms-of-perception/ https://www.moillusions.com/these-3-cars-are-same-in-size/

https://en.wikipedia.org/wiki/Human_mind
https://www.eruptingmind.com/depth-perception-cues-other-forms-of-perception/
https://www.moillusions.com/these-3-cars-are-same-in-size/


Depth Estimation in Monocular Images
In Computer Vision, existing solutions to depth estimation from a single image 
usually rely on deep learning based approaches:

● Supervised
○ ground-truth depth data (RGB-D cameras, 3D laser scanners)

● Semi-Supervised
○ sparse ground-truth depth + image reconstruction

● Self-Supervised 
○ image reconstruction (from monocular videos/stereo pairs/stereo 

sequences)
● Proxy-Supervised

○ depth labels extracted using external methods



Depth Estimation in Monocular Images

 Supervised (e.g. filtered LiDAR) Semi-Supervised ( raw LiDAR + images)

Self-Supervised (e.g. video or stereo) Proxy-Supervised (e.g. SGM)



Depth Map Prediction from a Single Image using 
a Multi-Scale Deep Network (Eigen, 2014)
● Neural network with two 

components: 
1. one that first estimates 

the global structure of 
the scene

2. a second that refines it 
using local information

● Trained with ground-truth 
depth labels



Unsupervised Learning of Depth and Ego-Motion 
from Video (Zhou, 2017)
● Depth from monocular images and ego motion
● Self-supervised learning framework
● End-to-end learning approach

Source Code: https://github.com/tinghuiz/SfMLearnerVideo Sequence

https://github.com/tinghuiz/SfMLearner


Motion Parallax

● When an observer translates relative to their visual environment, the relative 
motion of objects at different distances (motion parallax) provides a powerful 
cue to three-dimensional scene structure. 



Motion Parallax

● When an observer translates relative to their visual environment, the relative 
motion of objects at different distances (motion parallax) provides a powerful 
cue to three-dimensional scene structure. 



Unsupervised Learning of Depth and Ego-Motion 
from Video (Zhou, 2017)
● Novel view synthesis as key supervision signal
● Given one input view of a scene, synthesize a new image of the scene seen 

from a difference camera pose
● It is possible to synthesize a target view given:

○ Depth (for that image)
○ Pose
○ Visibility in a nearby view



View Synthesis as Supervision
Depth CNN

Pose CNN
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Assumptions

● The view synthesis formulation implicitly assumes:
○ Sufficient illumination in the environment
○ The scene is static without moving objects
○ Sufficient motion parallax in successive frames
○ Sufficient scene overlap between consecutive frames
○ There is no occlusion between the target view and the source views
○ The surface is Lambertian

● To improve the robustness:
○ Explainability prediction network



Differentiable depth image-based rendering 
(Jaderberg, 2015)

Project Warp

= bilinear interpolation of 4 neighbors



Network Architecture
Pose/explainability network

View synthesis loss

Single-view depth network

Total loss



Explainability prediction 
● Dynamic objects

● Visibility/Occlusion

Target view Explainability  mask Source view

Network’s belief in where direct view synthesis will 
be successfully modeled for each target pixel

● Thin Structures



Out-Of-View Pixels
● Out-of-view pixels due to egomotion at image boundaries

Time t



Out-Of-View Pixels

Time t+1

● Out-of-view pixels due to egomotion at image boundaries



Out-Of-View Pixels

Time t+1

● Out-of-view pixels due to egomotion at image boundaries



Out-Of-View Pixels

● The effect of out-of-view pixels can be reduced by masking such pixels in the 
reprojection loss. However, it does not handle occluded regions in the image

Mask

Time t Warped Image



Handling Occlusions
● When the camera moves points in the scene that are visible in one frame may 

become occluded in another, and viceversa



Static and“Car-following” scenarios
● Moving objects and/or a stationary camera are an issue when training a 

single-image depth network on monocular video sequences

● If the moving object has the same speed and direction as the camera, then the 
reprojection error is low, i.e. a depth of infinity for that object. 

Stationary camera (no parallax)



Static and“Car-following” scenarios
● Moving objects and/or a stationary camera are an issue when training a 

single-image depth network on monocular video sequences

● If the moving object has the same speed and direction as the camera, then the 
reprojection error is low, i.e. a depth of infinity for that object. 

Car following scenario



Static and“Car-following” scenarios
● Moving objects and/or a stationary camera are an issue when training a 

single-image depth network on monocular video sequences

● If the moving object has the same speed and direction as the camera, then the 
reprojection error is low, i.e. a depth of infinity for that object. 



Static and“Car-following” scenarios
● Auto-masking as simple method that filters out pixels which do not change 

appearance from one frame to the next in the sequence

:per-pixel minimum



Static and“Car-following” scenarios
● Auto-masking as simple method that filters out pixels which do not change 

appearance from one frame to the next in the sequence



Unsupervised Monocular Depth Estimation with 
Left-Right Consistency (Godard, 2018)

● Given a calibrated stereo pair at training time, the goal is to find a dense 
correspondence field (disparity) that, when applied to the left/right image, 
would enable to reconstruct the right/left image 

● Given the predicted disparity, the baseline and the focal length, we can 
trivially recover the depth as:

Source Code: https://github.com/mrharicot/monodepth

https://github.com/mrharicot/monodepth


Naive approach 

Input CNN Disparity Sampler Output Target



No Left-Right Consistency

Input CNN Disparity Sampler Output Target



Left-Right Consistency

Input CNN Disparity Sampler Output Target



Training Loss

● Appearance Matching loss

● Disparity Smoothness Loss

● Left-Right Disparity Consistency Loss

● Total Loss

Based on three comparison measurements: i) 
luminance ii) contrast and iii) structure



Limitations for training on stereo images using image 
riprojection only
● Leveraging for training on stereo imagery yields state-of-the art performance

● In this way, the depth representation learned by the network is affected by artifacts 
in specific image regions (occlusions)

● Post-processing partially compensates for these artifacts, but it requires a double 
forward of the input image



Post-processing
Depth CNN

● This way, the depth representation learned by the network is affected by artifacts 
in specific image regions inherited from the stereo setup (e.g., the left border 
using the left image as the reference and in occluded areas).

● A post-processing step partially compensates such artifacts



Post-processing
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Depth CNN

horizontal  flip



Learning monocular depth estimation infusing 
traditional stereo knowledge (Tosi, 2019)
● Proxy annotation through traditional stereo algorithms enables more 

accurate monocular depth estimation keeping a self-supervised approach

RGB SGM Monocular Network
  (monoResMatch)



Network Architecture

● A novel end-to-end architecture trained to estimate depth from a monocular 
image leveraging a virtual stereo setup



Self-Supervised Monocular Depth Hints (Watson, 
2019)
● Existing self-supervised regression methods can struggle during training to 

find the global optimum when minimizing photometric reprojection loss

● Depth hints as depth suggestions to enhance an existing photometric loss 
function

● Depth hints can offer a more plausible reprojection

● Depth hints are only used, when needed, to guide the network out of the 
local minima









● Total training loss

where

● The goal is to optimize a given algorithm’s existing loss, and to consult a pixel’s 
depth hint only when the reprojection loss can be improved upon

● Depth Hints extracted using a traditional stereo algorithm (e.g. SGM) on rectified 
stereo pairs



Qualitative Results



Single View Stereo Matching (Luo, 2018)

● Monocular depth estimation problem can be reformulated as two 
sub-problems, a view synthesis procedure followed by stereo matching



Framework

         Trained on a synthetic dataset  
in a supervised manner (optionally fine-tuned)

Deep3D

probabilistic summation

 Probabilistic 
disparity map



Input Image Godard et al. OCV-BM Single-View Stereo (SVS)

Qualitatives on the KITTI Benchmark



Towards Robust Monocular Depth Estimation: Mixing Datasets for 
Zero-shot Cross-dataset Transfer (MiDaS) [7]

https://github.com/intel-isl/MiDaS

https://github.com/intel-isl/MiDaS


● Deep  learning  methods  have  recently driven significant progress in the 
monocular depth estimation task.

● RGB + Depth as the best solution for training single-view deep learning based 
models but they are difficult to collect

● However, we need training data that captures the diversity of the visual world in 
order to obtain models that are effective across a variety of scenarios

● The key challenge is to acquire such data at sufficient scale

How to obtain more training data?



● Novel ways to train robust monocular depth estimation models that are expected 
to perform across diverse environments

● Experiments with five diverse training datasets (ReDWeb, MegaDepth, WSVD, 
DIML Indoor), including a new massive  data source:  3D  movies. Each single 
dataset comes with its own characteristics and has its own biases and problems

● Tools that enable mixing multiple datasets during training, even  if  their  
annotations  are  incompatible



Depth from 3D movies - Challenges
● The primary objective when producing stereoscopic film is providing a visually 

pleasing viewing experience while avoiding discomfort for the viewer: disparity 
range is limited and depends on both artistic and psychophysical 
considerations

● Focal lengths, baseline and convergence angle between the cameras of the 
stereo rig are unknown and vary between scenes

● In contrast to the standard stereo case, stereo pairs in movies usually contain 
both positive and negative disparities to allow objects to be perceived either in 
front or behind the screen

● Movies have varying aspect ratios, resulting in black bars on the top and 
bottom of the frame



Depth from 3D movies - Disparity Extraction

● To alleviate these problems, an optical flow network is applied to the stereo 
pairs

● The horizontal component of the flow as a proxy for disparity

● Optical flow naturally handle both positive and negative disparities

● Left-right consistency check and mark pixels with a disparity difference of 
more than 2 pixels as invalid.

● Other filtering procedures:
○ Frames are rejected if more than 10% of all pixels have a vertical disparity >2 pixels

○ Detect pixels that belong to sky regions using a pre-trained semantic segmentation model
○ Center crop to remove black bars



Depth from 3D movies



Training on Diverse Data - Challenges

1. Inherently different representations of depth: Direct vs Inverse Depth

2. Scale ambiguity: for some data (eg. depth from MVS), depth is only given up to an 
unknown scale

3. Shift ambiguity: some datasets provide disparity only up to an unknown scale 
and global disparity shift (e.g. 3D movies) 

Reference Image Direct depth Inverse depth Inverse depth + Shift ambiguity



Scale and shift invariant losses
● Prediction in disparity space

● Two strategies for alignment

1. Least square criterion + mean squared error (not robust for outliers)

2. Robust estimators of scale and shift + absolute deviation

: scaled and shifted prediction

: scaled and shifted groundtruth

: loss function

: prediction
: groundtruth

s and t efficiently 
determined in closed form

prediction and gt scaled to 
have zero translation and 
unit scale

estimators of scale and shift



Qualitatives Examples



Qualitatives on Paintings and Drawings



Failure Cases
● Paintings, photos, and mirrors are often not recognized as such

● The model fails to recover the ground plane, likely because the input image was rotated by 
90 degrees (data augmentation can be helpful)



Boosting Monocular Depth Estimation Models to 
High-Resolution (Miangoleh, CVPR 2021)

http://yaksoy.github.io/highresdepth/

http://yaksoy.github.io/highresdepth/


Observations

● Depth maps extracted from standard monocular networks are  well  below  
one-megapixel resolution and often lack fine-grained details, which limits their 
practicality

● Practical constraints such as available GPU memory, lack of diverse high-resolution 
datasets, and the receptive field size of CNN’s limit the potential of current methods

● The output characteristics of monocular depth estimation networks change with the 
resolution of the input image:

○ Low Resolution: the estimations have a consistent structure while lacking 
high-frequency details

○ High Resolution: the high-frequency details are captured much better while 
the structural  consistency of the estimated depth  gradually degrades 



● This is mainly due to the limited capacity and the limited 
receptive field size of the network.



● As the resolution increases starting from the receptive field size of 448, the network again 
progressively degrades the accuracy

● The maximum resolution at which the network will be able to generate a consistent structure 
depends on the distribution of the contextual cues in the image



● A double-estimation framework that merges two depth estimations for the same image at 
different resolutions to generate a result with high-frequency details while maintaining the 
structural consistency

● Generate multi-megapixel depth maps with a high level of detail using a pre-trained model 
(e.g, MiDAS)

Framework



From low-res From high-res 

Merged 



MiDaS MiDaS + Boosting SGR SGR + BoostingInput



Can we run such systems everywhere? 

High-end GPU (i.e. nVidia Titan X)
              Power hungry (250 Watt) - nearly 30 fps (~ 0.035s per frame)

Average CPU (i.e., Intel i7)
              Lower energy requirements (~90 Watt)
              Less than 2 fps (~ 0.60s per frame)

Embedded CPU (i.e., Raspberry Pi 3)
              Extremely low consumption (~3,5 Watt)
              Incredibly SLOW (~ 10s per frame)



• Current architectures for monocular depth estimation are very deep and 
complex; for these reasons they require dedicated hardware such as high-end 
and power-hungry GPUs.

• This fact precludes to infer depth from a single image in many interesting 
applications fields characterized by low-power constraints (e.g. UAVs, wearable 
devices, ...) 

Code: https://github.com/mattpoggi/pydnet

Towards real-time unsupervised monocular 
depth estimation on CPU (Poggi, 2018/2022)

https://github.com/mattpoggi/pydnet


● Shallow, pyramidal features encoder
● Coarse-to-fine strategy: depth is 

estimated from lower to higher 
resolution by lightweight decoders

● Each decoder outputs depth, so as 
we can early stop to trade accuracy 
for efficiency

● About 6% complexity compared to 
Godard et al., CVPR 2017 (1.9M vs 
31,6M params

● Self-supervised training as Godard et 
al., CVPR 2017

PyDNet 
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● Runtime on the ARM Cortex A57 
embedded CPU of the NVIDIA Jetson 
Nano

PyDNet 



PyDNet2 





Quantitative results on the KITTI dataset 



Memory Footprint 

● RAM usage for all models,  testing on i7 CPU 



How much can we trust Self-supervised Monocular Depth Estimation?



On the uncertainty of self-supervised monocular 
depth estimation (Poggi, 2020)

● As for other perception strategies, it is essential to find out failure cases in monocular 
depth estimation networks

● The erroneous perception of distance to pedestrians or other vehicles might have 
dramatic consequences

● The ill-posed nature of depth-from-mono perception task makes this eventuality much 
more likely to occur compared to scene geometry (e.g. depth from multiple views)



● Empirical Estimation: aims at encoding uncertainty empirically by measuring the 
variance between a set of all possible network configuration (epistemic uncertainty)
○ Dropout Sampling
○ Bootsrapped Ensemble
○ Snapshot Ensemble

● Predictive Estimation: these methods produce uncertainty estimates that are function of 
network parameters and the input image (aletoric heteroscedastic uncertainty)
○ Log-Likelihood Maximization
○ Self-Teaching
○ Learning Reprojection

● Bayesian Estimation: uncertainty estimates by either placing distributions over model 
weights, or by learning a direct mapping to probabilistic outputs

Depth-from-mono Uncertainties 



Conclusion and Discussion
● Deep learning based methods (CNNs) demonstrated a strong ability to 

accurately estimate dense depth maps from a single image
● Self-supervised methodologies to overcome the lack of ground truth depth 

data (stereo or videos at training time)
● Depth known up to a scale factor (except some situations, e.g. stereo)
● Although the great advances in this field, mono solutions are much less 

reliable than stereo/multi-view stereo approach (no geometry)
● High-resolution estimation is still an open-problem but great advances for 

real-time performances suited for many applications
● The problem of the domain shift is even more evident w.r.t deep learning 

based solutions for stereo 


