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Sensing 3D Geometry

“The goal of image-based 3D reconstruction is to 
infer the 3D geometry and structure of objects and 

scenes from one or multiple 2D images ”  



Sensing 3D Geometry

Input Images

3D Reconstruction



Sensing 3D Geometry

Augmented realityAutonomous driving

Robotics Medical applications



Sensing 3D Geometry

Passive SensorsActive Sensors



Depth Sensors - Overview

STRUCTURED LIGHT LiDAR STEREO

Accuracy

Range

Indoor Performance

Outdoor Performance

Resolution

HighLow HighLow HighLow

Cost

Active Sensors Passive Sensors



Depth Sensors - Overview

STRUCTURED LIGHT LiDAR STEREO

Accuracy

Range

Indoor Performance

Outdoor Performance

Resolution

HighLow HighLow HighLow

Cost

Active Sensors Passive Sensors



Right Left

Image 1 Image 2

Object

Stereo Setup



Camera

Image

Object

Image

Object

Camera

t-3 t-2
t-1

t

Monocular Setup - Single/Multi-view 



3D Reconstruction Pipeline 

Input Images Camera Poses

Dense Correspondences3D Reconstruction

Depth Computation  +
 Depth Map Fusion



Two-View Stereo Matching

Task:

● Construct a dense 3D model from 2D images of a static scene (syncrhonized cameras)

Pipeline:

1. Calibrate cameras intrinsically and extrinsically
2. Rectify images given the calibration
3. Compute disparity map for reference image (e.g. left image)
4. Remove outliers using consistency/occlusion test
5. Obtain depth from disparity using camera calibration
6. Construct 3D model, e.g, via volumetric fusion and meshing



Epipolar Geometry

   Epipolar line segment 
corresponding to one ray

   Corresponding set of  epipolar   
    lines and their epipolar plane

● Epipolar geometry is used to describe geometric relations in image pairs

the epipolar plane 
depends on the projection 
centers and the point



● A point in the first image must be located on the epipolar line in the right image

● This reduces correspondence search to a much simpler 1D problem

● For VGA images:     640 instead of    300k hypotheses (factor 480 less)

Epipolar Geometry



● Image planes are coplanar        Epipoles at infinity, epipolar lines parallel

● Correspondence search along horizontal scanlines

   rectified 
epipolar lines

● Reproject image planes onto a common plane parallel to the line between camera centers

● The transformation can be expressed by a rotation around the optical center and an 
update of the focal length (the 3D structure must not be known).

Image Rectification



Rectification Example

● Correspondences are located on the same image row as the query point



● Disparity refers to the difference in horizontal location of an object in the left and right 
image - an object at position (x,y) in the left image appears at position (x-d,y) in the right 
image

Left Image Right Image

Disparity Estimation Example



● If we know the disparity of an object we can compute its depth using the relation:

Left Image Right Image

Disparity Estimation Example



Left Image Disparity Map

● Warmer colors represent larger values of disparity (and smaller values of depth)

Disparity Estimation Example



● The left and right ray must intersect as both lie in the epipolar line
● Assuming disparity                       with                and              , we have 

Disparity to Depth



Matching Cost 
Computation

Matching Cost
Disparity Map

Disparity 
Refinement

Stereo Pair

     Refined  
 Disparity Map

Ground-Truth

Traditional Stereo Matching Pipeline

Matching Cost 
Aggregation/ 
Optimization



Similarity Metrics

Left Image Right Image

● Radiometric differences often occur due to different imaging characteristics of the camera 
due to: different exposure time, non-lambertian reflection which is view-dependent etc.



Similarity Metrics

Left Image



Similarity Metrics

Right Image



Similarity Metrics

Left Image Right Image

● How to determine if two image points correspond?
● A single pixel does not reveal the local structure (too many ambiguities)
● Therefore, we should compare at least a small region/patch



Similarity Metrics

Left Image Right Image

Matching Score

● Center a small window on a 
pixel and match the whole 
window in the right image

Scanline



Similarity Metrics

Left Image Right Image

● Consider two             windows of pixels flattened to vectors 

● Sum of squared difference (SSD):

Numerous other similarity metrics exist (NCC, Census+Hamming Distance)



Similarity Metrics - Census Transform

● The census transform (CT) is an image operator that associates to each pixel of a 
grayscale image a binary string (that depends on a window around the pixel)

● Since the census transform uses the relative intensity of input images, it is insensitive to 
differences in camera gain or bias, of input images.



Similarity Metrics - Census Transform

● The census transform (CT) is an image operator that associates to each pixel of a 
grayscale image a binary string (that depends on a window around the pixel)

● Since the census transform uses the relative intensity of input images, insensitive to 
differences in camera gain or bias, of input images.
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Similarity Metrics - Census Transform

● The census transform (CT) is an image operator that associates to each pixel of a 
grayscale image a binary string (that depends on a window around the pixel)

● Since the census transform uses the relative intensity of input images, insensitive to 
differences in camera gain or bias, of input images.

10 12 28

20 30 42

80 82 84

30 45 102

105 90 135

246 255 258

0 0 0

0 1

1 1 1

0 0 1

1 1

1 1 1

00011110

00111111

Bit Array

Hamming Distance

2
What if we 
multiply an 
image by 3?

Represents  the number of bits 
that differ in the two bit strings 

Le
ft 

Pa
tc

h
R

ig
ht

 P
at

ch

RGB Census



Similarity Metrics - Census Transform

Left Image Left Image - Census (3x3)



Block Matching

Left Image Disparity  Map Ground Truth

● Choose disparity range 

● For all pixels                    compute the best disparity         Winner-Takes-All (WTA)

● (optionally) Do this for both images and apply left-right consistency check to remove outliers



When will local matching fail?



● Corresponding regions in both images should look similar

● Non-corresponding regions should look different

● When will this similarity constraint fail?

The Underlying Assumption



● Corresponding regions in both images should look similar

● Non-corresponding regions should look different

● When will this similarity constraint fail?

The Underlying Assumption



Similarity Constraint: Failure Cases

Textureless
  Surfaces

Left Image
   Patch

Right Image 
    Patch

Non-Lambertian 
     Surfaces

Occluded 
Regions

Slanted 
Surfaces

Repetitive 
  Pattern



Block Matching: Occluded Regions 

● The red area is visible in the left image, but not in the right image
● For occluded pixels there exists no correspondence (we cannot estimate disparity) 



Left-Right Consistency Check 

● Outliers and occlusions can be detected via a left-right consistency check
● Compute disparity map for both images, verify if they map to each other 

Left Image Right Image
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Left-Right Consistency Check 

● Outliers and occlusions can be detected via a left-right consistency check
● Compute disparity map for both images, verify if they map to each other 
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Left-Right Consistency Check 

● Outliers and occlusions can be detected via a left-right consistency check
● Compute disparity map for both images, verify if they map to each other 

Disparity w/o LRC Disparity with LRC 



Block Matching: Assumption Violation

● Block matching assumes that all pixels inside the window are displaced by  

● This is called the fronto-parallel assumption which is often invalid (valid only for 3D 
planes that are parallel to the image plane)  

● Slanted surfaces deform perspectively when the viewpoint changes  
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Block Matching: Assumption Violation

● The window content changes differently at disparity discontinuities  

Left Image Left Image Patch

● Block matching assumes that all pixels inside the window are displaced by  

● This is called the fronto-parallel assumption which is often invalid (valid only for 3D 
planes that are parallel to the image plane)  



Block Matching: Assumption Violation

Right Image Right Image Patch

● The window content changes differently at disparity discontinuities  

● Block matching assumes that all pixels inside the window are displaced by  

● This is called the fronto-parallel assumption which is often invalid (valid only for 3D 
planes that are parallel to the image plane)  



Effect of Window Size

Tradeoff (there is no optimal window size that can handle all these problems at once)

● Small windows lead to matching ambiguities and noise in the disparity maps

● Larger windows lead to smoother results, but loss of details (better for untextured regions 
and repetitive patterns) 

Window Size: Window Size: 



How does the real world look like?

● Depth varies slowly except at object discontinuities  



Stereo Processing by Semiglobal Matching and 
Mutual Information  (Hirschmuller, 2005)
● Find the best disparity map that minimizes the following global 2D energy function



Stereo Processing by Semiglobal Matching and 
Mutual Information  (Hirschmuller, 2005)
● Find the best disparity map that minimizes the following global 2D energy function

Data Term

Smoothness Term 
(Slanted Surfaces)

   Smoothness Term 
(Depth Discontinuities)

         Smoothness terms that penalizes
disparity differences between neighboring pixels



Stereo Processing by Semiglobal Matching and 
Mutual Information  (Hirschmuller, 2005)
● Find the best disparity map that minimizes the following global 2D energy function

● Minimizing 2D global minimization is a NP-complete problem

● Semi-Global Matching (SGM) idea: perform line optimisation along multiple directions

● If parameters have not been properly tuned, the performance of the algorithm may not 
be as efficient as expected

Data Term

Smoothness Term 
(Slanted Surfaces)

   Smoothness Term 
(Depth Discontinuities)



Stereo Processing by Semiglobal Matching and 
Mutual Information  (Hirschmuller, 2005)
● Find the best disparity map that minimizes the following global 2D energy function

● 1D-cost approximation in each of 8/16 directions (paths)

● Advantages: accuracy, computational efficiency, simplicity…but suffers streaking artifacts

Data Term

Smoothness Term 
(Slanted Surfaces)

   Smoothness Term 
(Depth Discontinuities)
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Local vs (Semi-)Global

Reference Image Local Approach Semi-Global Approach 



● Hand crafted features and similarity metrics do not take into consideration relevant 
geometric and radiometric invariances or occlusion patterns

Siamese Networks for Stereo Matching

● Matching cost computation can be treated as image classification problem

● The world is too complex to specify this by hand

Left Patch Right Patch Label

Wrong 
Match

Good 
Match

The two center pixels are 
the images of the same 3D 
position



● Learning a similarity measure on small image patches using a convolutional neural 
network (CNN)

Stereo Matching by Training a Convolutional 
Neural Network to Compare Image Patches  
(Zbontar and LeCun, 2016)

● Training is carried out in a supervised manner by constructing a binary classification data 
set with example of similar and dissimilar pairs of patches

● The output of the convolutional neural network is used to initialize the stereo matching cost

Image Ground truth Disparity (LiDAR)



Network Architectures

MC-CNN-fast MC-CNN-acrt

Learned Similarity:
● Learn features and similarity 

metric
● Potentially more expensive
● Slow (WxHxD MLP evaluation)

Cosine Similarity:
● Learn features and, then, dot-product
● Features must do the heavy lifting
● Fast matching (no network eval.)



MC-CNN-acrt vs MC-CNN-fst

● In both architectures the Siamese network is responsible for describing the given 
patches by extracting learned features

● The fast architecture computes a similarity score using the dot product of the extracted 
features

● The accurate architecture learns a similarity function based on the extracted feature 
vectors 

● As the names imply the accurate architecture (MC-CNN-acrt) is more accurate but much 
slower. This is because features must be concatenated and forward propagated through 
the fully connected layers for each candidate disparity d



Training Process

● The training set is composed of patch triplets

●                is an image patch from the left image centered at 
●                is an image patch from the right image centered at

       

                           How to choose both the positive and negative examples?



Training Process

● The training set is composed of patch triplets

●                is an image patch from the left image centered at 
●                is an image patch from the right image centered at
● Negative example:

○ Offset         drawn from 
● Positive example:

○ Offsets        drawn from
● Here,    denotes the true disparity for a pixel (provided as ground truth)
● Typically              ,               and 



Training Process

● Ground truth disparities from standard datasets (e.g. KITTI or Middlebury) to construct a 
binary classification dataset

● The fast architecture is trained using  a hinge loss on pairs of positive and negative 
samples. The hinge loss for a pair is defined as                                     . The loss is zero 
when the similarity of the positive example is greater than the similarity of negative 
example by at least the margin 

● The accurate architecture is trained using the binary cross entropy                                              
where    is the ground label of the sample. 1 for positive and 0 for negative 

● The decision to use two different loss functions, one for each architecture, was based on 
empirical evidence



Winner-takes All Results

Input Image

Siamese Network

Standard Block-Matching



MC-CNN cost optimization and post processing

● Cross based cost aggregation (CBCA)
● Semi-Global Matching (SGM)
● Left-Right Consistency Check (LRC)
● Background Interpolation
● Subpixel enhancement
● Median Filter
● Bilateral Filter



MC-CNN cost optimization and post processing

Left Disparity Map

Right Disparity Map

Left-Right Consistency Check



● Original version implemented in CUDA and Lua/Torch7
● Run on Nvidia GTX Titan GPU
● Training takes 5 hours 

○ 45 million training examples
○ 16 epochs
○ Stochastic gradient descent with batch size of 128

● Inference for a single pair of images takes 6 seconds/100 seconds
○ 1 second / 95 seconds for the neural network (depending on the architecture)
○ 3 seconds for the semi-global matching
○ 1 second for cost aggregation

Runtime



Confidence measures 
● Regardless of the stereo algorithm, disparity maps contain outliers
● Confidence estimation aims at detecting such unreliable depth assignments

Reference image Disparity map (SGM) Confidence map
(the brighter, the more 

reliable)



Confidence measures - Basics 
● Conventional methods, reviewed and evaluated in (Hu and Mordhoai, 2012), relies on 

assumptions mostly based on matching cost analysis 
● For instance, the matching costs on the left are assumed to be more likely to yield a 

more reliable correspondence compared to the right ones
● Many other heuristics have been proposed in the literature

 

d d

Matching 
cost

Matching 
cost

High confidence (?) Low confidence (?)



Learning from scratch a confidence measure 
(Poggi and Mattoccia 2016)

● Recurrent local patterns occurring in the disparity maps can tell a correct assignment from 
a wrong one

● Leveraging on CNNs, confidence formulation as a regression problem by analyzing the 
disparity map provided by a stereo vision system



● By visual inspection, disparity maps contains meaningful patterns to tell correct 
assignments from wrong ones

Wrong Match Good Match



Network Architecture

● A single channel network that takes small patches as input, each one containing 
disparity values normalized between zero and one.

● The single output value represents the degree of uncertainty from the disparity map
● Binary cross-entropy loss during training
● Trained in a supervised manner using disparities computed by a  Block-Matching 

algorithm as well as SGM



Reference Image Disparity Map Confidence Measure (CNN)

Middlebury v3
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End-to-End Stereo Matching

● Convolutional Neural Networks proved good performance for single tasks of the stereo 
pipeline
○ Confidence Estimation
○ Matching Cost
○ Refinement

● However, separate trainings for each sub-step lead to sub-optimal solutions



Stereo Pair

CNN Disparity Map

● End-to-end models can reach unpaired accuracy if evaluated in the same domain as  
that on which they are trained

End-to-End Stereo Matching



FlowNet and DispNet

● Dosovitskiy et al. proposed FlowNet (Dosovitskiy, 2015)
○ End-to-end architecture for optical flow estimation
○ Extremely fast (10+ FPS on GPU)
○ Promising results on synthetic datasets (MPI Sintel)

● Mayer et al. proposed DispNet (Mayer, 2016)
○ Competitive with state-of-the-art in 2016 (MC-CNN-acrt) on KITTI data
○ But 100x faster than MC-CNN-acrt!

● Both requires a huge amount of data to be trained



FlowNet and DispNet

● U-Net architectures
○ Encoding part: decimates resolution while increasing receptive field
○ Decoding part: restores original resolution (actually, half resolution)
○ Skip connections between encoder and decoder to recover fine details

● Dense regression task
○ End-point-error between prediction and ground truth flow/disparity as loss function



FlowNet and DispNet

● Correlation layer
○ Features are extracted from input images
○ Shifted correlations (i.e. dot products) between features on the two images

■ Optical flow: 2D search window
■ Stereo: 1D (horizontal) search

○ Concatenation on the feature channel

Shared parameters to more effectively 
learn corresponding features



Data for Training

● Given a single stereo pair, we have
○ thousand of samples for patch-based CNNs (small receptive field)
○ one sample for end-to-end architectures (Iarge receptive field)

● KITTI provides only 200 pairs for training -> not enough for DispNet!

● Use of synthetic datasets



Synthetic data: SceneFlow Dataset
● A large synthetic dataset has been released 

(Mayer, 2016)

● 39K synthetic stereo pairs in 3 splits
○ FlyingThings3D 

■ Train split - 22K
■ Test split - 4K

○ Driving - 4.5K
○ Monkaa - 8.5K

● Ground truth disparity, optical flow, disparity change (for scene flow) and object 
segmentation are provided

● Fine-tuning on little real data (expensive annotations)



Towards state-of-the-art

● DispNetC proved that end-to-end CNNs can be extremely fast and competitive, but still 
less accurate than hand-designed pipelines

● Re-thinking the architecture of the network considering explicit knowledge about the 
problem, e.g. geometry (Kendall, 2017), will bring these approaches to dominate the most 
popular benchmarks



End-to-End Learning of Geometry and Context for 
Deep Stereo Regression (Kendall, 2017)

● Use of the insights from many decades of multi-view geometry research to guide 
architectural design (no black-box model)

● Differentiable layers representing each major component in traditional stereo pipelines

● Goal: learn the entire model end-to-end while leveraging our geometric knowledge of 
the stereo problem

● Avoid designing each step of the stereo algorithm by hand



GC-Net (Geometry and Context Network)

● 2D feature extraction
○ resnet-18 feature extractor (shared weights)

● Cost volume building
○ features concatenation: D x H x W x 2F (4D cost volume)

● 3D feature optimization
○ U-Net encoder-decoder with 3D convolutions and skip connections

● Differentiable WTA (soft-argmax) -> standard WTA is not differentiable and it is discrete

Descriptor which is more robust to the 
ambiguities in photometric 
appearance and can incorporate local 
context



GC-Net (Geometry and Context Network)

● 2D feature extraction
○ resnet-18 feature extractor (shared weights)

● Cost volume building
○ features concatenation: D x H x W x 2F (4D cost volume)

● 3D feature optimization
○ U-Net encoder-decoder with 3D convolutions and skip connections

● Differentiable WTA (soft-argmax) -> standard WTA is not differentiable and it is discrete

Forming a cost volume allows to constrain the 
model in a way which preserves the 
knowledge of the geometry of stereo vision



GC-Net (Geometry and Context Network)

● 2D feature extraction
○ resnet-18 feature extractor (shared weights)

● Cost volume building
○ features concatenation: D x H x W x 2F (4D cost volume)

● 3D feature optimization
○ U-Net encoder-decoder with 3D convolutions and skip connections

● Differentiable WTA (soft-argmax) -> standard WTA is not differentiable and it is discrete

Matching costs between unary 
features can never be perfect. 
The goal is to learn to 
regularize and improve this 
volume



Soft ArgMax

Fully Differentiable and allows 
sub-pixel disparity estimates



Correlation vs 4D volume

● To resume, the network reported so far are built upon one of these principles:

❏ Feature Correlation
❏ Encodes similarity into features channel
❏ Faster runtime, but the real geometric context is lost

❏ 4D Cost Volume
❏ Similarity costs as third dimension
❏ Slower runtime, but real geometric context is maintained
❏ High amount of memory usage



Qualitative results on the KITTI benchmark

Left Image



Qualitative results on the KITTI benchmark

MC-CNN-acrt

Disparity Map (D1-All: 4.99)



Qualitative results on the KITTI benchmark

Disparity Map (D1-All: 4.53)

DispNet-C



Qualitative results on the KITTI benchmark

Disparity Map (D1-All: 1.92)

GC-Net



Synthetic Image Real-World Image

● Domain shift caused by the very different conditions between real and fake imagery 
results in lower accuracy on real environments

● Deep stereo networks works extremely well when enough data is available
● Most of them use large synthetic datasets. However..

Domain Shift



Domain Shift
● Train data is hard and expensive to collect
● Further fine-tune on few annotated samples of the target domain is performed to 

address the domain shift.

Disparity Map - without fine-tuning

Disparity Map - with fine-tuning



Self-Supervised Stereo

● What if ground truth depth labels are not available on the target domain?

● Obtaining ground truth depth labels on real-world scenes is really expensive

● Self-supervision as alternative solution

Stereo Pair

CNN Ground truthPredicted



Self-Supervised Stereo

● The intuition is that if we can warp between the image pair properly, then we must have 
learned the dense disparity map

Stereo Pair

CNN Predicted

Warping

Photometric Loss

Le
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● Given the right image and the disparity map for the left image, the left image can be 
generated by warping the right image with the dense disparity map as



Ground truth
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Discussion

● The greatest turning-point was due to the change from hand-crafted pipelines to 
end-to-end networks

● Conventional knowledge about stereo survived this paradigm shift and has not gone 
extinct

● The main shortcomings introduced by end-to-end models concern the need for large 
amounts of ground truth annotated samples

● Two major challenges remain in this field:
○ Generalization across different domains
○ Applicability on high-resolution images


