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3 – Unsupervised Domain Adaptation 

for Semantic Segmentation



Data Problem

3

What if we lack labels?

Annotated data are extremely difficult to obtain. For instance, for semantic segmentation, we need several hours to manually 

annotate a single image. For depth and optical flow, manually labelling is almost impossible.

?1.5h per image



Synthetic Data



Synthetic Data



Synthetic Data



Synthetic Data



Domain Shift

Synthetic vs Real Data

Do you note any differences?

Colors Light Sensor Noise Object Shapes Class Frequency Object/Camera PositioningTextures …



Domain Shift

Source Training Distribution ≠ Target Test Distribution

9

Real Image Manually annotated image

Performance gap

Network trained on synthetic data only Network trained on real data

Domain Adaptation



Unsupervised Domain Adaptation
Source Domain 

(Synthetic)
Target Domain (Real)

How can we 

exploit them?



Some Benchmarks for UDA for Semantic Segmentation

Gray Matter (GM) segmentation challenge 

(Prados et al., 2017). 
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Domain Alignment



Domain Alignment

Chen, C., Chen, Z., Jiang, B., & Jin, X. (2019). Joint Domain Alignment and Discriminative Feature Learning for Unsupervised Deep Domain Adaptation. AAAI.

Source Image Classification 

Encoder

Feature Vector Target Image Classification 

Encoder

Feature Vector

Red: Source samples

Blue: Target samples



Domain Alignment

Chen, C., Chen, Z., Jiang, B., & Jin, X. (2019). Joint Domain Alignment and Discriminative Feature Learning for Unsupervised Deep Domain Adaptation. AAAI.

Red: Source samples

Blue: Target samples

Black line: Hyperplane learned from 

the source domain

Circle, Square and Star indicate three 

different categories, respectively

Source Image Classification 

Encoder

Feature Vector Target Image Classification 

Encoder

Feature Vector

Trained Only on 

Source Domain

Feature Space



Domain Alignment

Chen, C., Chen, Z., Jiang, B., & Jin, X. (2019). Joint Domain Alignment and Discriminative Feature Learning for Unsupervised Deep Domain Adaptation. AAAI.

Red: Source samples

Blue: Target samples

Black line: Hyperplane learned from 

the source domain

Circle, Square and Star indicate three 

different categories, respectively

Trained with 

Domain Alignment
Trained Only on 

Source Domain
Encoder 

Feature Space

Trained with 

Domain Alignment
How can we achieve it?

Adversarial

Maximum Mean 

Discrepancy (MMD)

Optimal Transport

...



Generative Adversarial Networks (GANs)

Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., ... & Bengio, Y. (2014). Generative adversarial

nets. Advances in neural information processing systems, 27.



Generative Adversarial Networks (GANs)

Karras, T., Laine, S., & Aila, T. (2019). A style-based generator architecture for generative adversarial networks. In Proceedings of the IEEE/CVF conference on computer 

vision and pattern recognition (pp. 4401-4410).



Adversarial Discriminative Domain Adaptation (ADDA)

Tzeng, E., Hoffman, J., Saenko, K., & Darrell, T. (2017). Adversarial discriminative domain adaptation. In Proceedings of the IEEE 

conference on computer vision and pattern recognition (pp. 7167-7176).

1 - Pre-train a source encoder CNN using labeled source image examples.

2 - Perform adversarial adaptation by learning a target encoder CNN such that a discriminator that sees encoded 

source and target examples cannot reliably predict their domain label.

3 - During testing, target images are mapped with the target encoder to the shared feature space and classified 

by the source classifier. Dashed lines indicate fixed network parameters



Domain Alignment in Semantic Segmentation
Feature Level

In generic DA, domain alignment is often performed in a single latent representation space. 

In Semantic Segmentation networks, the alignment is often done at multiple layers, by discrepancy minimization between 

feature distributions or by adversarial learning relying on a domain classifier (DC) to increase domain confusion. 

Encoders and decoders of the segmentation network are often shared.
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Domain Alignment
Output Level

While images may be very different in 

appearance, their outputs are 

structured and share many 

similarities, such as spatial layout and 

local context.However, differently from the image classification task, feature adaptation 

for semantic segmentation may suffer from the complexity of high-

dimensional features that needs to encode diverse visual cues,  including 

appearance, shape and context. 



Domain Alignment
Output Level

While images may be very different in 

appearance, their outputs are 

structured and share many 

similarities, such as spatial layout and 

local context.



Tsai, Y. H., Hung, W. C., Schulter, S., Sohn, K., Yang, M. H., & Chandraker, M. (2018). Learning to adapt structured output space for semantic segmentation. In Proceedings of 

the IEEE conference on computer vision and pattern recognition (pp. 7472-7481).

Domain Alignment
Output Level
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Domain Alignment
Output Level

Feature-Level

Output-Level

GTA5 to Cityscapes

Ablation study

65.1Oracle 

Baseline 17.9 



Image to Image Translation

Style Transfer
Image Synthesis Image Inpainting

Sketch to image Face manipulation Super resolution



Image to Image Translation as Image Style Transfer
Synthetic to Real

Shrivastava, A., Pfister, T., Tuzel, O., Susskind, J., Wang, W., & Webb, R. (2017). Learning from simulated and unsupervised images through adversarial training. In Proceedings of 

the IEEE conference on computer vision and pattern recognition (pp. 2107-2116).



Domain Alignment: Image Level



Cycle-GAN

Jun-Yan Zhu*, Taesung Park*, Phillip Isola, and Alexei A. Efros. "Unpaired Image-to-Image Translation using Cycle-Consistent Adversarial Networks", in IEEE International 

Conference on Computer Vision (ICCV), 2017. (* indicates equal contributions)



Cycle-GAN



Cycle-GAN
Synthetic to Real

There are still artifacts due to the missing semantic information during the 

transformation process (e.g. sky becoming a tree).



Cycada
CycleGAN + Semantic Consistency

Hoffman, J., Tzeng, E., Park, T., Zhu, J. Y., Isola, P., Saenko, K., ... & Darrell, T. (2018, July). Cycada: Cycle-consistent adversarial domain adaptation. In International 

conference on machine learning (pp. 1989-1998). PMLR.



Cycada

GTAV

GTAV to Cityscapes

Cityscapes



Cycada
Some Results



Entropy Minimization



Entropy

Semantic 

Segmentation 

Network 

Input Softmax Output

Pixel-Wise 

Argmax
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Source vs Target Entropy

Semantic Segmentation Network 

Trained on Source Domain

Models trained only on source domain tend to produce over-confident, i.e., low-entropy, predictions on 

source-like images and under-confident, i.e.,  high-entropy, predictions on target-like ones



Source vs Target Entropy

Vu, T. H., Jain, H., Bucher, M., Cord, M., & Pérez, P. (2019). Advent: Adversarial entropy minimization for domain adaptation in semantic segmentation. In Proceedings of the 

IEEE/CVF Conference on Computer Vision and Pattern Recognition (pp. 2517-2526).



Ablation Study

Model trained only on source supervision 

produces noisy segmentation predictions as well 

as high entropy activations, with a few exceptions 

on some classes like “building” and “car”.

Still, there exist many confident predictions (low 

entropy) which are completely wrong.

MinEnt manage to produce correct 

predictions at high level of confidence.

AdvEnt achieves lower prediction entropy 

compared to the MinEnt model.



Quantitative Results
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Self-Training

S. Fralick, "Learning to recognize patterns without a teacher," in IEEE Transactions on 

Information Theory, vol. 13, no. 1, pp. 57-64, January 1967, doi: 10.1109/TIT.1967.1053952.



Self-Training
Overview

4 - Update Target 

Dataset and Re-Train

3- Process

Pseudo Labels

1 – Train a Strong Baseline

2 - Generate 

Pseudo Labels

Zou, Y., Yu, Z., Kumar, B. V. K., & Wang, J. (2018). Unsupervised domain adaptation for semantic segmentation via class-balanced self-training. In Proceedings of the European conference on 

computer vision (ECCV) (pp. 289-305).



Self-Training

Pretrain 

Network 

Domain 

Alignment
Self-Supervised 

Learning

…

1 – Train a Strong Baseline
Source Target

Strong Data 

Augmentation

Domain

Generalization



Self-Training

Pretrained 

Network 

2 – Generate Pseudo Labels

Target Pseudo-Labels

[OPTIONAL]

Auxiliary information used to 

filter wrong proxies

such as Entropy, Softmax, 

Logits, etc.



Self-Training

3 – Process Pseudo Labels

Processing

Filtering

Cut&Paste

…
Refinement

Example Naïve Filtering

Filtering 

Low-Confident

Pseudo-Label

Confidence Information

 (e.g., Entropy, Softmax, ..)

Filtered Pseudo-Label



Self-Training

3 – Process Pseudo Labels

Processing

Filtering

Cut&Paste

…
Refinement

Class-Balanced Filtering

Class-

Balanced

Filtering 

Low-Confident

Pseudo-Label

Confidence Information

 (e.g., Entropy, Softmax, ..)

Filtered Pseudo-Label
Zou, Y., Yu, Z., Kumar, B. V. K., & Wang, J. (2018). Unsupervised domain adaptation for semantic segmentation via class-

balanced self-training. In Proceedings of the European conference on computer vision (ECCV) (pp. 289-305).



Class-Balanced Self-Training (CBST)
Class-Balanced Filtering

Softmax Output

for each Target Image

1- Re-arrange softmax maps as pixels arrays for 

each class (argmax of softmax) 

2-  Sort from most to least confident (Softmax 

maximum for each pixel as confidence)

Select 𝑝𝑐 most confident 

pixels of each class

𝑝𝑐 = 𝑝 ∈ [0 − 100]% of 

pixels of class 𝑐 

𝑝 is the same for all classes

Filtered

Pseudo Labels

Zou, Y., Yu, Z., Kumar, B. V. K., & Wang, J. (2018). Unsupervised domain adaptation for semantic segmentation via class-

balanced self-training. In Proceedings of the European conference on computer vision (ECCV) (pp. 289-305).
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Self-Training

3 – Process Pseudo Labels

Cardace, A., Ramirez, P. Z., Salti, S., & Di Stefano, L. (2022). Shallow Features Guide Unsupervised Domain 

Adaptation for Semantic Segmentation at Class Boundaries. In Proceedings of the IEEE/CVF Winter Conference 

on Applications of Computer Vision (pp. 1160-1170).

Processing

Filtering

Cut&Paste

…
Refinement

Example of Cut&Paste



Self-Training

The decision boundary (dashed line) crosses the distribution of the target 

data and induces incorrect pseudo label  predictions. This is because the 

network is unaware of the target distribution when generating pseudo labels.

The pseudo labels are obtained according to a strict confidence threshold, 

while high scores are not necessarily correct, making the network fail to 

learn reliable knowledge in the target domain.

3 – Process Pseudo Labels

Processing

Filtering

Cut&Paste

…
Refinement



Self-Training
Refinement with Prototypes

Calculate the prototypes of each class on-the-fly and rely on 

these prototypes to online correct the false pseudo labels. 

ො𝑦𝑡
(𝑖,𝑗)

= 𝜀 𝑤𝑡
𝑖,𝑘

𝑝𝑡
𝑖,𝑘

𝑤𝑡
(𝑖,𝑘)

=
exp −

ሚ𝑓 𝑥𝑡
𝑖 − 𝜂 𝑘

𝜏

σ𝑘′ exp −
ሚ𝑓 𝑥𝑡

𝑖 − 𝜂 𝑘′

𝜏

Each pixel softmax output 𝑝𝑡 is multiplied by 

weights 𝑤𝑡 accordingly to distances  w.r.t. 

prototypes 𝜂 before doing argmax 𝜀.
ሚ𝑓 is  a mean teacher.

Prototypes are estimated after each iteration

as a moving average of the cluster centroids

in mini-batch   

Zhang, P., Zhang, B., Zhang, T., Chen, D., Wang, Y., & Wen, F. (2021). Prototypical pseudo label denoising and target structure learning for domain adaptive semantic segmentation. 

In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (pp. 12414-12424).

ProDA



Self-Training
Refinement with Prototypes

The network may induce

dispersed feature distribution in the target domain which is 

hardly differentiated by a linear classifier.

Zhang, P., Zhang, B., Zhang, T., Chen, D., Wang, Y., & Wen, F. (2021). Prototypical pseudo label denoising and target structure learning for domain adaptive semantic segmentation. 

In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (pp. 12414-12424).

In this case, the prototypes fail to rectify the labels of the data 

whose features lie in the far end of the cluster even when the 

target features from the source model are well-separated. 

Idea: Forcing clustering by 

constraining two augmented 

version of the same data 𝑥𝑡 to 

have the same distance w.r.t. 

class prototypes.



Self-Training

4 – Iterative Process

Generate Pseudo 

Labels

Train Network 

using Pseudo 

Labels

Process 

Pseudo Labels



Some Qualitative Results

[1] Zhang, P., Zhang, B., Zhang, T., Chen, D., Wang, Y., & Wen, F. (2021). Prototypical pseudo label denoising and target structure learning for domain adaptive semantic segmentation. 

In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (pp. 12414-12424).

[1]



Some Quantitative Results

[1] Zhang, P., Zhang, B., Zhang, T., Chen, D., Wang, Y., & Wen, F. (2021). Prototypical pseudo label denoising and target structure learning for domain adaptive semantic segmentation. 

In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (pp. 12414-12424).

[1]

65.1Oracle 



Self-supervised learning



Self-supervised Tasks

[OPTIONAL]

Processing
Output Loss

[OPTIONAL]

Processing

Input

Task Network



Examples of Self-Supervised Tasks on Images

Image Colorization Image Rotation Auto-Encoder



Examples of Self-Supervised Tasks on Images

Denoising Auto-Encoder Masked Auto-Encoders Jigsaw Puzzle



Self-supervised learning in UDA
Self-Supervised Tasks as Auxiliary Tasks for Domain Alignment

Sun, Y., Tzeng, E., Darrell, T., & Efros, A. A. (2019). Unsupervised domain adaptation through self-supervision. arXiv preprint arXiv:1909.11825.

Using multiple self-supervised tasks 

can further align the domains along 

multiple directions. 

Training a shared representation to 

support one self-supervised task on 

both domains can align the source 

and target along one direction.

Source domain is far away from the 

target domain, and a source 

classifier cannot generalize to the 

target.



Self-supervised learning in UDA
Self-Supervised Tasks as Auxiliary Tasks

Sun, Y., Tzeng, E., Darrell, T., & Efros, A. A. (2019). Unsupervised domain adaptation through self-supervision. arXiv preprint arXiv:1909.11825.

Select and correctly using the Auxiliary Tasks is 

difficult:

• It should help reasoning about the Target Task

• It should be “aligned” across domains (e.g., should 

not require capturing information on the factors 

where the domains are meaninglessly different)



Self-supervised learning in UDA
Self-Supervised Tasks as Auxiliary Tasks

Sun, Y., Tzeng, E., Darrell, T., & Efros, A. A. (2019). Unsupervised domain adaptation through self-supervision. arXiv preprint arXiv:1909.11825.

If used only on the target domain may help discriminability, i.e., reasoning how to color an image is connected to the object semantic.

However, if performed on both source and target domain would make feature focusing on color, increasing the domain-gap.

Example: Colorization



Some Reasons Why Depth can be a good Auxiliary Task for Semantic 

Segmentation

Depth can be addressed in a self-supervised manner Depth and semantic share similar edge structure.

Depth Structures are 

Similar Across Domains 

Depth information can be useful 

for some geometric data 

augmentation

Correlations between tasks are moderately 

domain-invariant (e.g., road flat, sky far away).



Self-supervised Learning in UDA for Semantic Segmentation
Self-Supervised Depth

𝑮𝟏→𝟐
𝑨

𝑮𝟏→𝟐
𝑨

Cardace, A., De Luigi, L., Ramirez, P. Z., Salti, S., & Di Stefano, L. (2022). Plugging Self-Supervised Monocular Depth into Unsupervised Domain 

Adaptation for Semantic Segmentation. In Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision (pp. 1129-1139).

Learning relationships between tasks in Source Domain with 

labels

Relationship generalize well across domains and can be 

used to extract information from the depth information

Semantic from depth is strong in areas with domain-

invariant across tasks relationship. 

(e.g. sky is far and in top image regions).

Merge with any other standard UDA method.



Self-supervised Learning in UDA for Semantic Segmentation
Self-Supervised Depth

Data Augmentation Depth Based for Self-Training



Self-supervised Learning in UDA for Semantic Segmentation
Self-Supervised Depth

RGB UDA UDA + Depth GT



Overview & Conclusion



Overview of UDA Techniques 
Early 2022

Domain Alignment: 

Feature, Image or 

Output Level

Adversarial attacks

Pseudo-labelling 

and self-training

Model distillation

Self-ensembling

Co-training

Entropy 

minimization of 

target predictions

Curriculum learning

Self-supervised 

learning



Quantitative Results 2018-2022

Hoyer, L., Dai, D., & Van Gool, L. (2022). HRDA: Context-Aware High-Resolution Domain-Adaptive Semantic 

Segmentation. arXiv preprint arXiv:2204.13132

ProDA + D4



Overview of Adaptation Scenarios

w.r.t. Labeled Data Availability

Unsupervised



Adaptation Scenarios 

w.r.t. Source and Target Label Sets Overlap

Source Domain

Target Domain
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