Deep Scene Understanding from Images for Monitoring Applications

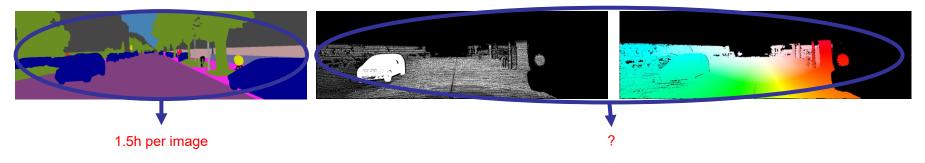
Matteo Poggi, Fabio Tosi, **Pierluigi Zama Ramirez** Computer Vision Lab (CVLab), University of Bologna

3 – Unsupervised Domain Adaptation for Semantic Segmentation

Data Problem

What if we lack labels?

Annotated data are extremely difficult to obtain. For instance, for semantic segmentation, we need several hours to manually annotate a single image. For depth and optical flow, manually labelling is almost impossible.



Synthetic Data

Input

Semantic Segmentation

110

Input

Semantic Instance Segmentation

Synthetic Data

Input

AL

Optical Flow

Synthetic Data

Visual Odometry

Domain Shift

Synthetic vs Real Data

Do you note any differences?

Textures

Light Sensor Noise

Object Shapes

Class Frequency

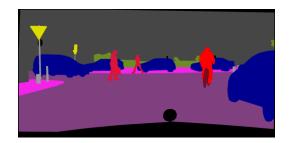
Object/Camera Positioning

...

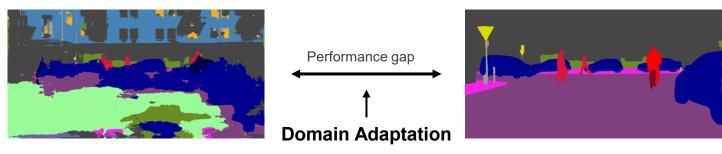
Domain Shift

Source Training Distribution *≠* Target Test Distribution

Real Image



Manually annotated image



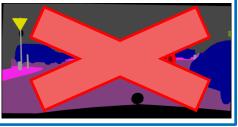
Network trained on synthetic data only

Unsupervised Domain Adaptation

Source Domain (Synthetic)

Target Domain (Real)

How can we exploit them?

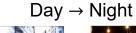


Some Benchmarks for UDA for Semantic Segmentation

Most Popular!

Urban Environment, Autonomous Driving

Synthetic → Real

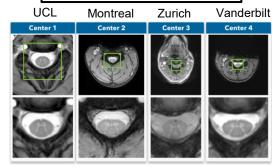


Tokyo

Taipe

MRI of different centers

Cityscapes \rightarrow Across Cities

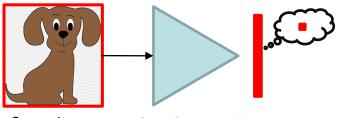


Gray Matter (GM) segmentation challenge (Prados et al., 2017).

Aerial Images Across Cities

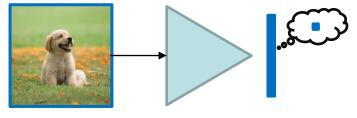
Massachusetts WHU Lee et al. Inria Dataset Dataset Dataset

Dataset



Source Image

Classification Feature Vector Encoder

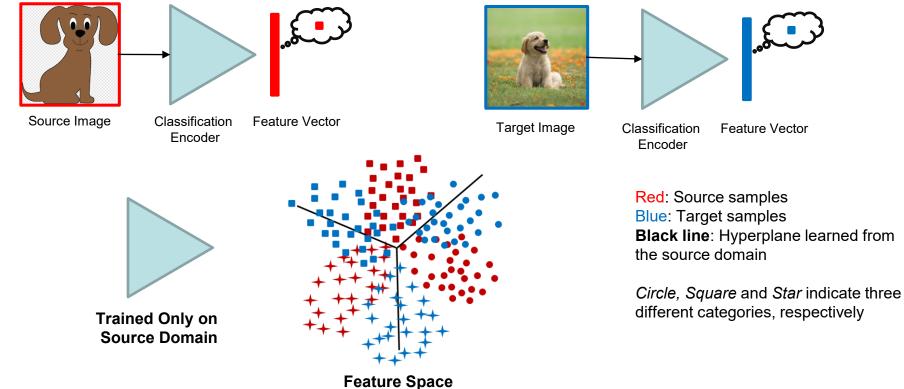


Target Image

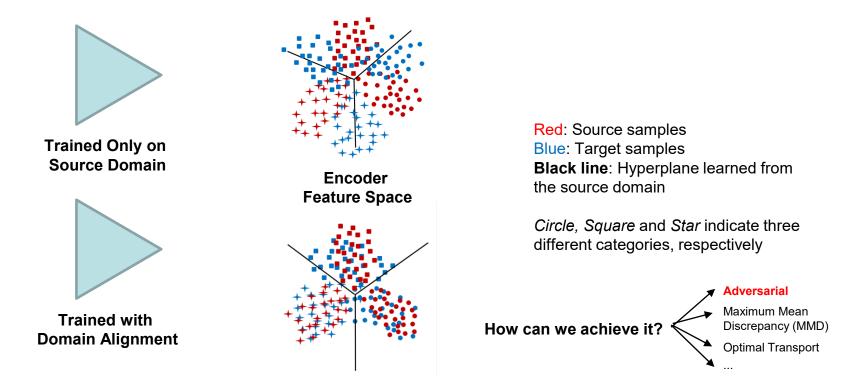
Classification Feature Vector Encoder

Red: Source samples Blue: Target samples

Chen, C., Chen, Z., Jiang, B., & Jin, X. (2019). Joint Domain Alignment and Discriminative Feature Learning for Unsupervised Deep Domain Adaptation. AAAI.

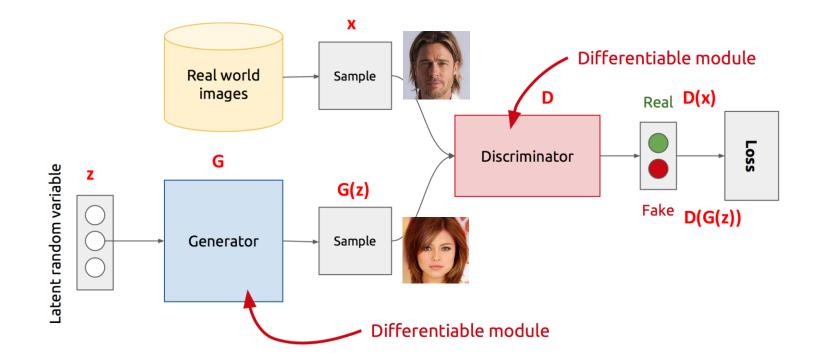


Chen, C., Chen, Z., Jiang, B., & Jin, X. (2019). Joint Domain Alignment and Discriminative Feature Learning for Unsupervised Deep Domain Adaptation. AAAI.



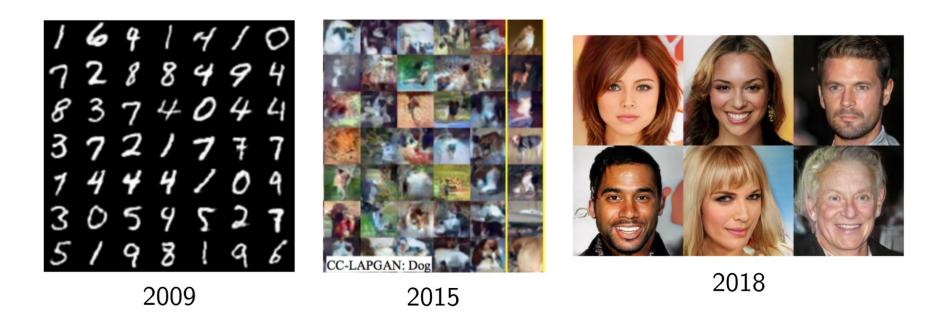
Chen, C., Chen, Z., Jiang, B., & Jin, X. (2019). Joint Domain Alignment and Discriminative Feature Learning for Unsupervised Deep Domain Adaptation. AAAI.

Generative Adversarial Networks (GANs)



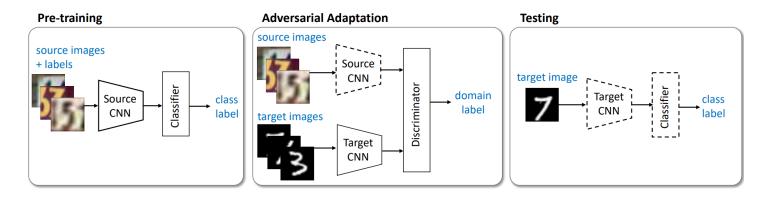
Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., ... & Bengio, Y. (2014). Generative adversarial nets. *Advances in neural information processing systems*, 27.

Generative Adversarial Networks (GANs)



Karras, T., Laine, S., & Aila, T. (2019). A style-based generator architecture for generative adversarial networks. In *Proceedings of the IEEE/CVF conference on computer* vision and pattern recognition (pp. 4401-4410).

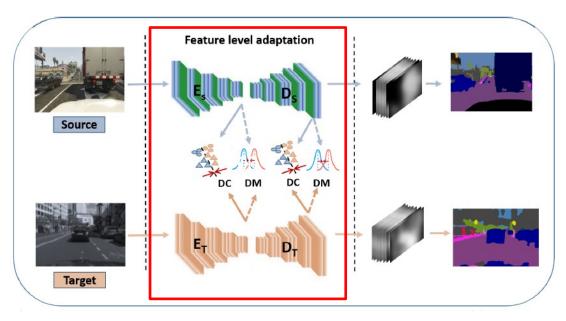
Adversarial Discriminative Domain Adaptation (ADDA)



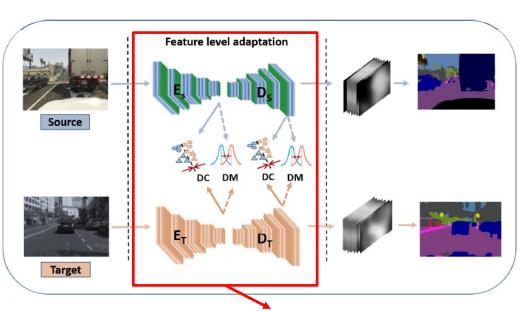
1 - Pre-train a source encoder CNN using labeled source image examples.

- 2 Perform adversarial adaptation by learning a target encoder CNN such that a discriminator that sees encoded source and target examples cannot reliably predict their domain label.
- 3 During testing, target images are mapped with the target encoder to the shared feature space and classified by the source classifier. Dashed lines indicate fixed network parameters

Domain Alignment in Semantic Segmentation Feature Level



In generic DA, domain alignment is often performed in a single latent representation space. In Semantic Segmentation networks, the alignment is often done **at multiple layers**, by discrepancy minimization between feature distributions or by adversarial learning relying on a domain classifier (DC) to increase domain confusion. Encoders and decoders of the segmentation network are often shared.

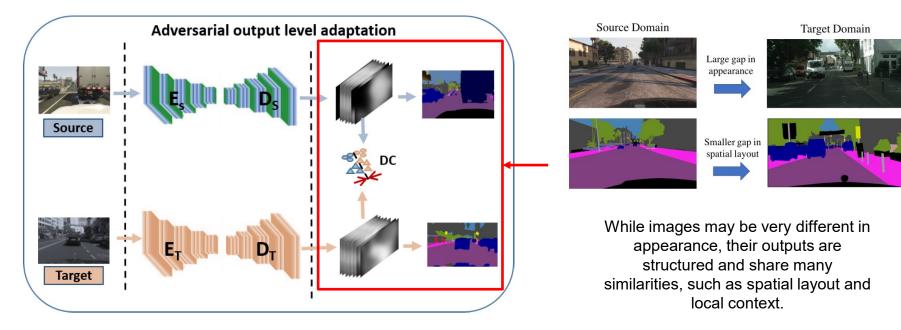


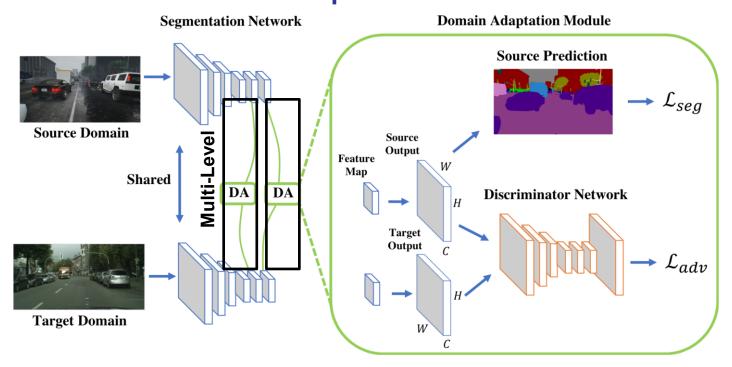
However, differently from the image classification task, feature adaptation for semantic segmentation may suffer from the complexity of highdimensional features that needs to encode diverse visual cues, including appearance, shape and context.

Target Domain

in ut

While images may be very different in appearance, their outputs are structured and share many similarities, such as spatial layout and local context.





Tsai, Y. H., Hung, W. C., Schulter, S., Sohn, K., Yang, M. H., & Chandraker, M. (2018). Learning to adapt structured output space for semantic segmentation. In *Proceedings of the IEEE conference on computer vision and pattern recognition* (pp. 7472-7481).

GTA5 to Cityscapes

Baseline	seline Feature-Level														17.9		
FCNs in the Wild [13] CyCADA (feature) [12]																	
							Out	tput	-Lev	əl							

Ours (singel-level) 87.3 29.8 78.6 21.1 18.2 22.5 21.5 11.0 79.7 29.6 71.3 46.8 6.5 80.1 23.0 26.9 0.0 10.6 0.3 35.0

Ablation study

Baseline (ResNet)	75.8 16.8 77.2 12.5 21.0 25.5 30.1 20.1 81.3 24.6 70.3 53.8 26.4 49.9 17.2 25.9 6.5 25.3 36.0 36.6
Ours (feature)	83.7 27.6 75.5 20.3 19.9 27.4 28.3 27.4 79.0 28.4 70.1 55.1 20.2 72.9 22.5 35.7 8.3 20.6 23.0 39.3
Ours (single-level)	86.5 25.9 79.8 22.1 20.0 23.6 33.1 21.8 81.8 25.9 75.9 57.3 26.2 76.3 29.8 32.1 7.2 29.5 32.5 41.4
Ours (multi-level)	86.5 36.0 79.9 23.4 23.3 23.9 35.2 14.8 83.4 33.3 75.6 58.5 27.6 73.7 32.5 35.4 3.9 30.1 28.1 42.4
Oracle	65.1

Image to Image Translation

Style Transfer

Image Synthesis

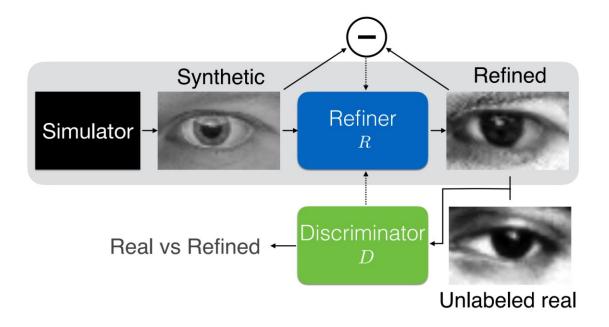
Image Inpainting

Sketch to image

Face manipulation

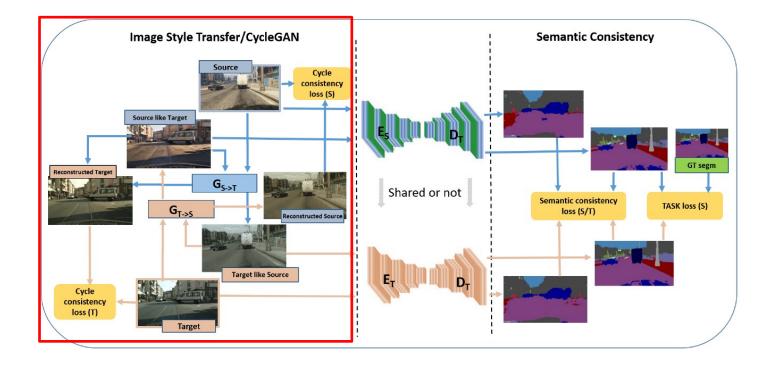
Super resolution

Image to Image Translation as Image Style Transfer Synthetic to Real

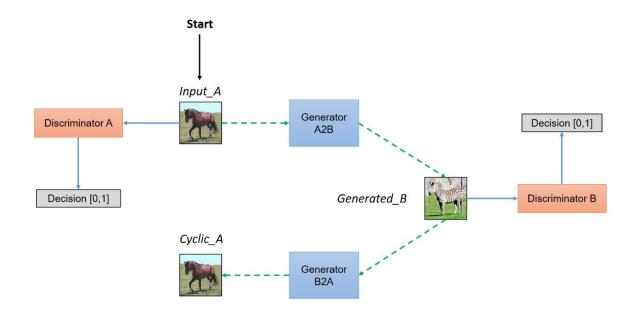


Shrivastava, A., Pfister, T., Tuzel, O., Susskind, J., Wang, W., & Webb, R. (2017). Learning from simulated and unsupervised images through adversarial training. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 2107-2116).

Domain Alignment: Image Level

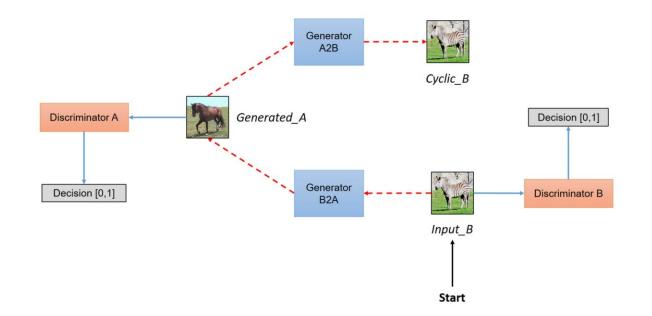


Cycle-GAN



Jun-Yan Zhu*, Taesung Park*, Phillip Isola, and Alexei A. Efros. "Unpaired Image-to-Image Translation using Cycle-Consistent Adversarial Networks", in IEEE International Conference on Computer Vision (ICCV), 2017. (* indicates equal contributions)

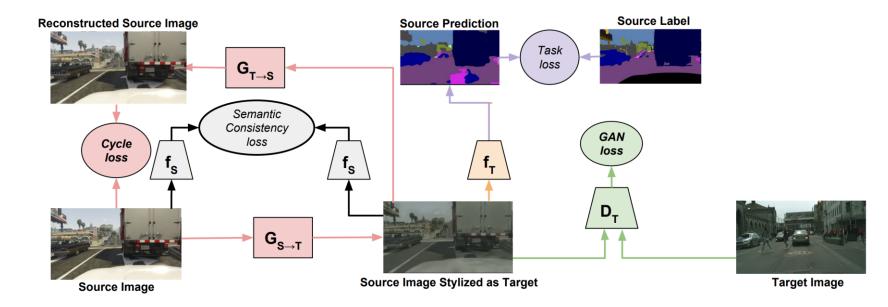
Cycle-GAN



Cycle-GAN Synthetic to Real

There are still artifacts due to the missing semantic information during the transformation process (e.g. sky becoming a tree).

Cycada CycleGAN + Semantic Consistency



Hoffman, J., Tzeng, E., Park, T., Zhu, J. Y., Isola, P., Saenko, K., ... & Darrell, T. (2018, July). Cycada: Cycle-consistent adversarial domain adaptation. In *International conference on machine learning* (pp. 1989-1998). PMLR.

Cityscapes

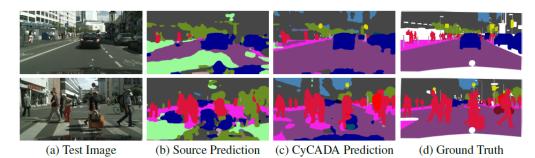
GTAV



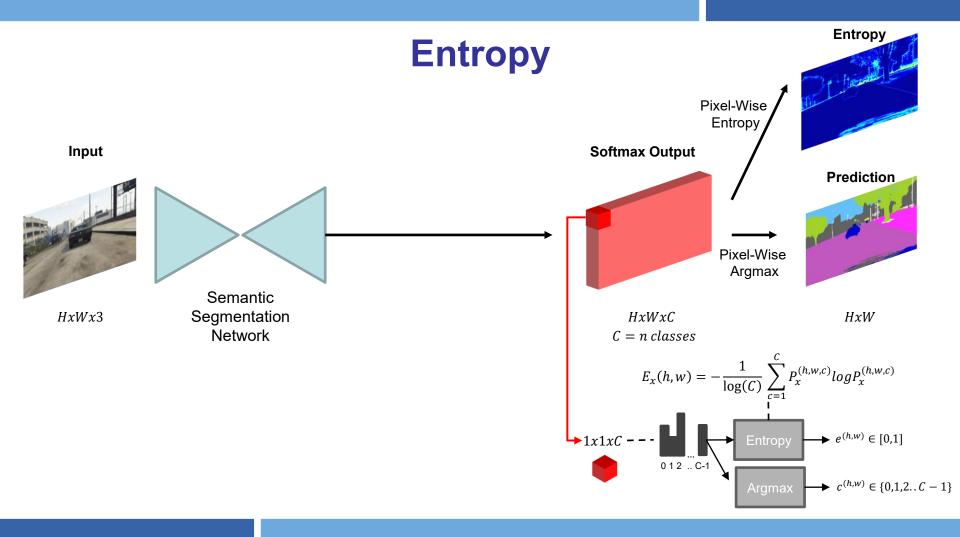
GTAV to Cityscapes

Cycada Some Results

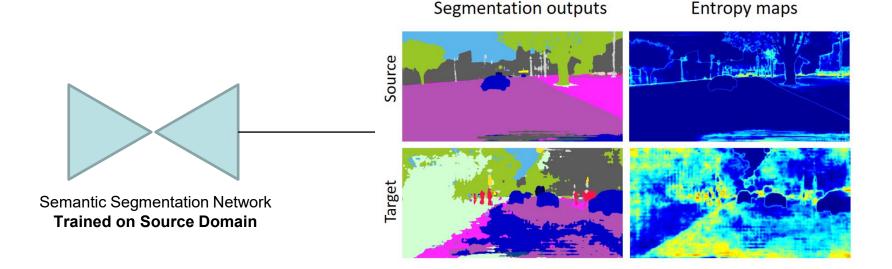
$GTA5 \rightarrow Cityscapes$																							
	Architecture	road	sidewalk	building	wall	fence	pole	traffic light	traffic sign	vegetation	terrain	sky	person	rider	car	truck	bus	train	motorbike	bicycle	mloU	IwloU	Pixel acc.
Source only	A	26.0	14.9	65.1	5.5	12.9	8.9	6.0	2.5	70.0	2.9	47.0	24.5	0.0	40.0	12.1	1.5	0.0	0.0	0.0	17.9	41.9	54.0
FCNs in the wild*	Α	70.4	32.4	62.1	14.9	5.4	10.9	14.2	2.7	79.2	21.3	64.6	44.1		70.4			0.0	3.5	0.0	27.1	_	_
CyCADA feat-only													38.2								29.2		
CyCADA pixel-only													49.4										
CyCADA pixel+feat	Α	85.2	37.2	76.5	21.8	15.0	23.8	22.9	21.5	80.5	31.3	60.7	50.5	9.0	76.9	17.1	28.2	4.5	9.8	0.0	35.4	73.8	83.6
Oracle - Target Super	A	96.4	74.5	87.1	35.3	37.8	36.4	46.9	60.1	89.0	54.3	89.8	65.6	35.9	89.4	38.6	64.1	38.6	40.5	65.1	60.3	87.6	93.1
Source only	B	42.7	26.3	51.7	5.5	6.8	13.8	23.6	6.9	75.5	11.5	36.8	49.3	0.9	46.7	3.4	5.0	0.0	5.0	1.4	21.7	47.4	62.5
CyCADA feat-only	в	78.1	31.1	71.2	10.3	14.1	29.8	28.1	20.9	74.0	16.8	51.9	53.6	6.1	65.4	8.2	20.9	1.8	13.9	5.9	31.7	67.4	78.4
CyCADA pixel-only	В	63.7	24.7	69.3	21.2	17.0	30.3	33.0	32.0	80.5	25.3	62.3	62.0	15.1	73.1	19.8	23.6	5.5	16.2	28.7	37.0	63.8	75.4
CyCADA pixel+feat	В	79.1	33.1	77.9	23.4	17.3	32.1	33.3	31.8	81.5	26.7	69.0	62.8	14.7	74.5	20.9	25.6	6.9	18.8	20.4	39.5	72.4	82.3
Oracle - Target Super	B	97.3	79.8	88.6	32.5	48.2	56.3	63.6	73.3	89.0	58.9	93.0	78.2	55.2	92.2	45.0	67.3	39.6	49.9	73.6	67.4	89.6	94.3



Entropy Minimization

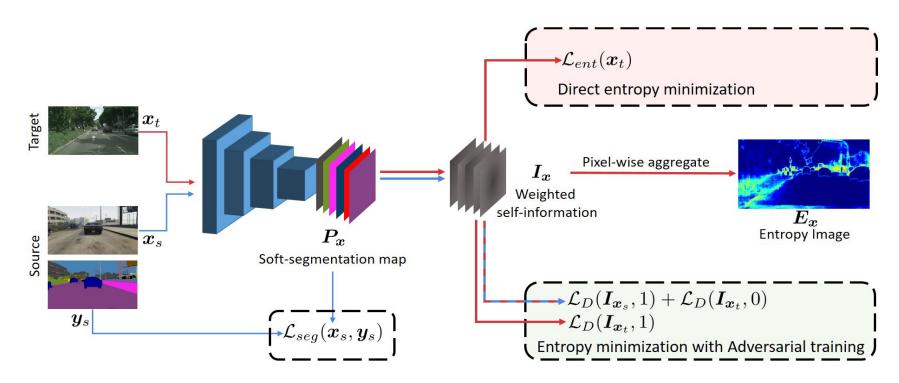


Source vs Target Entropy



Models trained only on source domain tend to produce *over-confident*, *i.e.*, low-entropy, predictions on source-like images and *under-confident*, *i.e.*, high-entropy, predictions on target-like ones

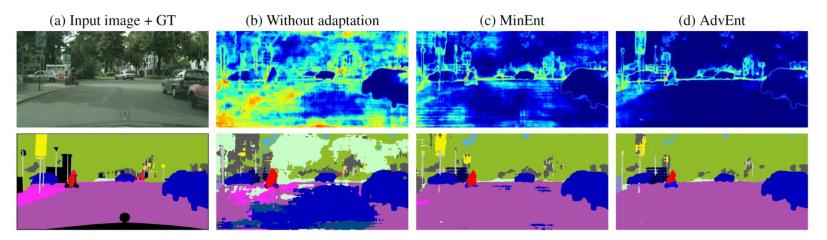
Source vs Target Entropy



Vu, T. H., Jain, H., Bucher, M., Cord, M., & Pérez, P. (2019). Advent: Adversarial entropy minimization for domain adaptation in semantic segmentation. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition* (pp. 2517-2526).

Ablation Study

MinEnt manage to produce correct predictions at high level of confidence.



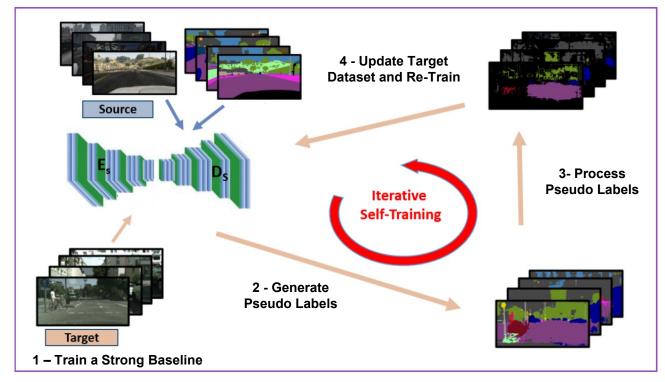
Model trained only on source supervision produces noisy segmentation predictions as well as high entropy activations, with a few exceptions on some classes like "building" and "car". Still, there exist many confident predictions (low entropy) which are completely wrong. AdvEnt achieves lower prediction entropy compared to the MinEnt model.

Quantitative Results

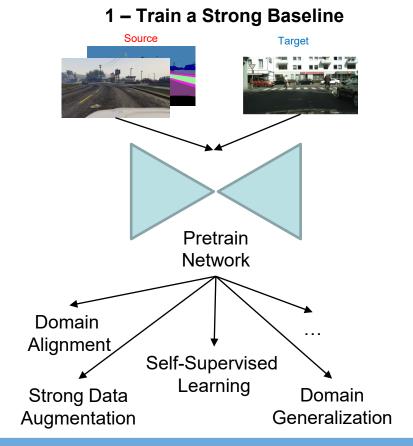
	Models	Appr.	road	sidewalk	building	wall	fence	pole	light	sign	veg	terrain	sky	person	rider	car	truck	bus	train	mbike	bike	mIoU
	FCNs in the Wild [15]	Adv	70.4	32.4	62.1	14.9	5.4	10.9	14.2	2.7	79.2	21.3	64.6	44.1	4.2	70.4	8.0	7.3	0.0	3.5	0.0	27.1
÷ 5	CyCADA [14]	Adv	83.5	38.3	76.4	20.6	16.5	22.2	26.2	21.9	80.4	28.7	65.7	49.4	4.2	74.6	16.0	26.6	2.0	8.0	0.0	34.8
Gab	Adapt-SegMap [41]	Adv	87.3	29.8	78.6	21.1	18.2	22.5	21.5	11.0	79.7	29.6	71.3	46.8	6.5	80.1	23.0	26.9	0.0	10.6	0.3	35.0
epا <	Self-Training [51]	ST	83.8	17.4	72.1	14.3	2.9	16.5	16.0	6.8	81.4	24.2	47.2	40.7	7.6	71.7	10.2	7.6	0.5	11.1	0.9	28.1
Deeplab-V2 with VGG-16	Self-Training + CB [51]	ST	66.7	26.8	73.7	14.8	9.5	28.3	25.9	10.1	75.5	15.7	51.6	47.2	6.2	71.9	3.7	2.2	5.4	18.9	32.4	30.9
-	Ours (MinEnt)	Ent	85.1	18.9	76.3	32.4	19.7	19.9	21.0	8.9	76.3	26.2	63.1	42.8	5.9	80.8	20.2	9.8	0.0	14.8	0.6	32.8
	Ours (AdvEnt)	Adv	86.9	28.7	78.7	28.5	25.2	17.1	20.3	10.9	80.0	26.4	70.2	47.1	8.4	81.5	26.0	17.2	18.9	11.7	1.6	36.1
2 101	Adapt-SegMap [41]	Adv	86.5	36.0	79.9	23.4	23.3	23.9	35.2	14.8	83.4	33.3	75.6	58.5	27.6	73.7	32.5	35.4	3.9	30.1	28.1	42.4
۳ ر	Adapt-SegMap*	Adv	85.5	18.4	80.8	29.1	24.6	27.9	33.1	20.9	83.8	31.2	75.0	57.5	28.6	77.3	32.3	30.9	1.1	28.7	35.9	42.2
sNe	Ours (MinEnt)	Ent	84.4	18.7	80.6	23.8	23.2	28.4	36.9	23.4	83.2	25.2	79.4	59.0	29.9	78.5	33.7	29.6	1.7	29.9	33.6	42.3
Deeplab-V ith ResNet	Ours (MinEnt + ER)	Ent	84.2	25.2	77.0	17.0	23.3	24.2	33.3	26.4	80.7	32.1	78.7	57.5	30.0	77.0	37.9	44.3	1.8	31.4	36.9	43.1
De with I	Ours (AdvEnt)	Adv	89.9	36.5	81.6	29.2	25.2	28.5	32.3	22.4	83.9	34.0	77.1	57.4	27.9	83.7	29.4	39.1	1.5	28.4	23.3	43.8
Ň	Ours (AdvEnt+MinEnt)	A+E	89.4	33.1	81.0	26.6	26.8	27.2	33.5	24.7	83.9	36.7	78.8	58.7	30.5	84.8	38.5	44.5	1.7	31.6	32.4	45.5

S. Fralick, "Learning to recognize patterns without a teacher," in *IEEE Transactions on Information Theory*, vol. 13, no. 1, pp. 57-64, January 1967, doi: 10.1109/TIT.1967.1053952.

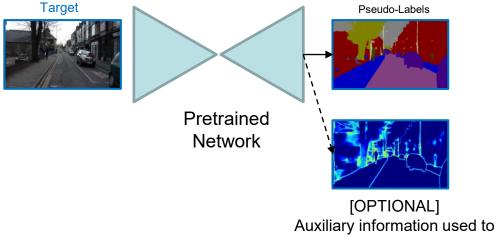
Self-Training Overview



Zou, Y., Yu, Z., Kumar, B. V. K., & Wang, J. (2018). Unsupervised domain adaptation for semantic segmentation via class-balanced self-training. In *Proceedings of the European conference on computer vision (ECCV)* (pp. 289-305).

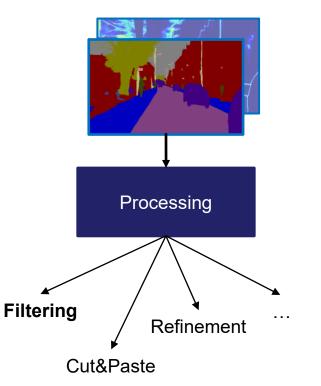


2 – Generate Pseudo Labels



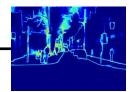
filter wrong proxies such as **Entropy**, Softmax, Logits, etc.

3 – Process Pseudo Labels



Example Naïve Filtering

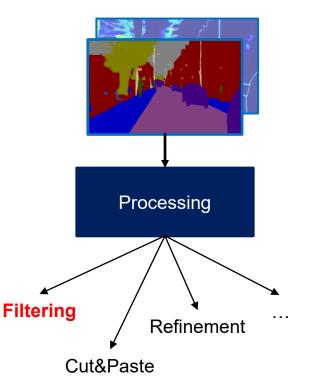
Pseudo-Label



Confidence Information (e.g., Entropy, Softmax, ..)

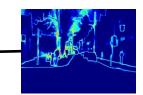
Filtered Pseudo-Label

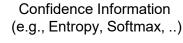
3 – Process Pseudo Labels



Class-Balanced Filtering

Pseudo-Label





Filtered Pseudo-Label

Zou, Y., Yu, Z., Kumar, B. V. K., & Wang, J. (2018). Unsupervised domain adaptation for semantic segmentation via classbalanced self-training. In *Proceedings of the European conference on computer vision (ECCV)* (pp. 289-305).

Class-Balanced Self-Training (CBST) Class-Balanced Filtering

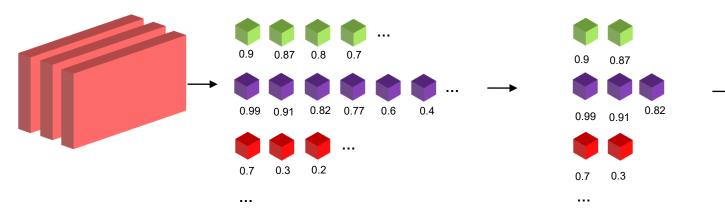
Softmax Output for each Target Image

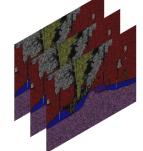
- 1- Re-arrange softmax maps as pixels arrays for each class (argmax of softmax)
 - 2- Sort from most to least confident (Softmax maximum for each pixel as confidence)

Select p_c most confident pixels of each class

 $p_c = p \in [0 - 100]\%$ of pixels of class c

p is the same for all classes



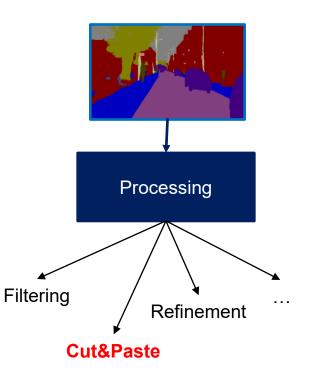


Filtered

Pseudo Labels

Zou, Y., Yu, Z., Kumar, B. V. K., & Wang, J. (2018). Unsupervised domain adaptation for semantic segmentation via classbalanced self-training. In *Proceedings of the European conference on computer vision (ECCV)* (pp. 289-305).

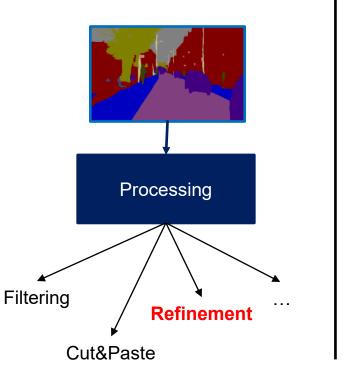
3 – Process Pseudo Labels



Example of Cut&Paste

Cardace, A., Ramirez, P. Z., Salti, S., & Di Stefano, L. (2022). Shallow Features Guide Unsupervised Domain Adaptation for Semantic Segmentation at Class Boundaries. In *Proceedings of the IEEE/CVF Winter Conference* on Applications of Computer Vision (pp. 1160-1170).

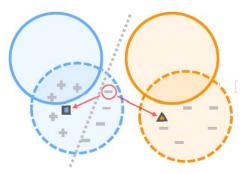
3 – Process Pseudo Labels



Self-Training

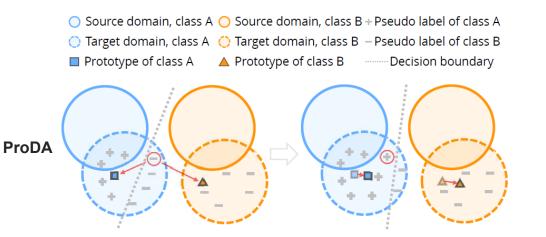
The pseudo labels are obtained according to a strict confidence threshold, while high scores are not necessarily correct, making the network fail to learn reliable knowledge in the target domain.

Source domain, class A
Source domain, class B + Pseudo label of class A
Target domain, class A
Target domain, class B - Pseudo label of class B



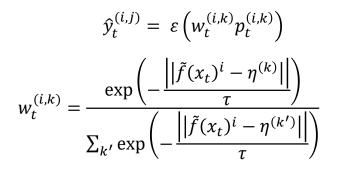
The decision boundary (dashed line) crosses the distribution of the target data and induces incorrect pseudo label predictions. This is because the network is unaware of the target distribution when generating pseudo labels.

Self-Training Refinement with Prototypes



Calculate the prototypes of each class **on-the-fly** and rely on these prototypes to online **correct** the false pseudo labels.

Each pixel softmax output p_t is multiplied by weights w_t accordingly to distances w.r.t. prototypes η before doing argmax ε . \tilde{f} is a mean teacher.



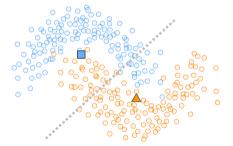
Prototypes are estimated after each iteration as a moving average of the cluster centroids in mini-batch

Zhang, P., Zhang, B., Zhang, T., Chen, D., Wang, Y., & Wen, F. (2021). Prototypical pseudo label denoising and target structure learning for domain adaptive semantic segmentation. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (pp. 12414-12424).

Self-Training Refinement with Prototypes

The network may induce dispersed feature distribution in the target domain which is hardly differentiated by a linear classifier.

Target domain, class A O Target domain, class B
Prototype of class A Prototype of class B
Decision boundary

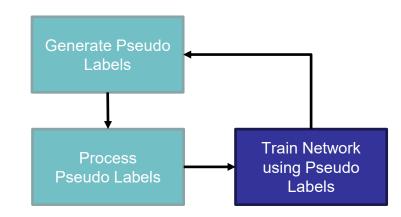


Idea: Forcing clustering by constraining two augmented version of the same data x_t to have the same distance w.r.t. class prototypes.

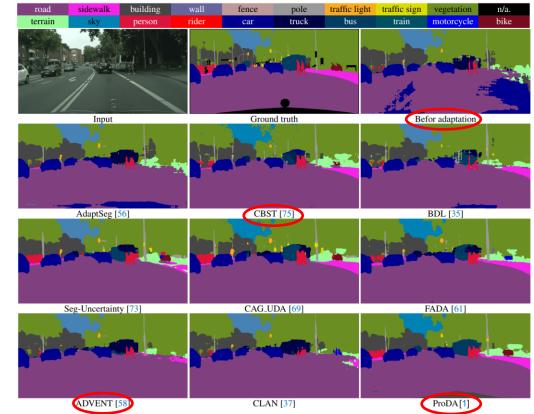
In this case, the prototypes fail to rectify the labels of the data whose features lie in the far end of the cluster even when the target features from the source model are well-separated.

> Zhang, P., Zhang, B., Zhang, T., Chen, D., Wang, Y., & Wen, F. (2021). Prototypical pseudo label denoising and target structure learning for domain adaptive semantic segmentation. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (pp. 12414-12424).

4 – Iterative Process



Some Qualitative Results



[1] Zhang, P., Zhang, B., Zhang, T., Chen, D., Wang, Y., & Wen, F. (2021). Prototypical pseudo label denoising and target structure learning for domain adaptive semantic segmentation. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (pp. 12414-12424).

Some Quantitative Results

	road	sideway	building	wall	fence	pole	light	sign	vege.	terrace	sky	person	rider	car	truck	pus	train	motor	bike	mIoU	gain
Source	75.8	16.8	77.2	12.5	21.0	25.5	30.1	20.1	81.3	24.6	70.3	53.8	26.4	49.9	17.2	25.9	6.5	25.3	36.0	36.6	+0.0
AdaptSeg [55]	86.5	25.9	79.8	22.1	20.0	23.6	33.1	21.8	81.8	25.9	75.9	57.3	26.2	76.3	29.8	32.1	7.2	29.5	32.5	41.4	+4.8
CyCADA [27]	86.7	35.6	80.1	19.8	17.5	38.0	39.9	41.5	82.7	27.9	73.6	64.9	19.0	65.0	12.0	28.6	4.5	31.1	42.0	42.7	+6.1
CLAN [37]	87.0	27.1	79.6	27.3	23.3	28.3	35.5	24.2	83.6	27.4	74.2	58.6	28.0	76.2	33.1	36.7	6.7	31.9	31.4	43.2	+6.6
APODA [68]	85.6	32.8	79.0	29.5	25.5	26.8	34.6	19.9	83.7	40.6	77.9	59.2	28.3	84.6	34.6	49.2	8.0	32.6	39.6	45.9	+9.3
PatchAlign [57]	92.3	51.9	82.1	29.2	25.1	24.5	33.8	33.0	82.4	32.8	82.2	58.6	27.2	84.3	33.4	46.3	2.2	29.5	32.3	46.5	+9.9
ADVENT [58]	89.4	33.1	81.0	26.6	26.8	27.2	33.5	24.7	83.9	36.7	78.8	58.7	30.5	84.8	38.5	44.5	1.7	31.6	32.4	45.5	+8.9
BDL [35]	91.0	44.7	84.2	34.6	27.6	30.2	36.0	36.0	85.0	43.6	83.0	58.6	31.6	83.3	35.3	49.7	3.3	28.8	35.6	48.5	+11.9
FADA [61]	91.0	50.6	86.0	43.4	29.8	36.8	43.4	25.0	86.8	38.3	87.4	64.0	38.0	85.2	31.6	46.1	6.5	25.4	37.1	50.1	+13.5
CBST [75]	91.8	53.5	80.5	32.7	21.0	34.0	28.9	20.4	83.9	34.2	80.9	53.1	24.0	82.7	30.3	35.9	16.0	25.9	42.8	45.9	+9.3
MRKLD [76]	91.0	55.4	80.0	33.7	21.4	37.3	32.9	24.5	85.0	34.1	80.8	57.7	24.6	84.1	27.8	30.1	26.9	26.0	42.3	47.1	+10.5
CAG_UDA [69]	90.4	51.6	83.8	34.2	27.8	38.4	25.3	48.4	85.4	38.2	78.1	58.6	34.6	84.7	21.9	42.7	41.1	29.3	37.2	50.2	+13.6
Seg-Uncertainty [73]	90.4	31.2	85.1	36.9	25.6	37.5	48.8	48.5	85.3	34.8	81.1	64.4	36.8	86.3	34.9	52.2	1.7	29.0	44.6	50.3	+13.7
ProDA	87.8	56.0	79.7	46.3	44.8	45.6	53.5	53.5	88.6	45.2	82.1	70.7	39.2	88.8	45.5	59.4	1.0	48.9	56.4	57.5	+20.9
Oracla																				65.1	

Oracle

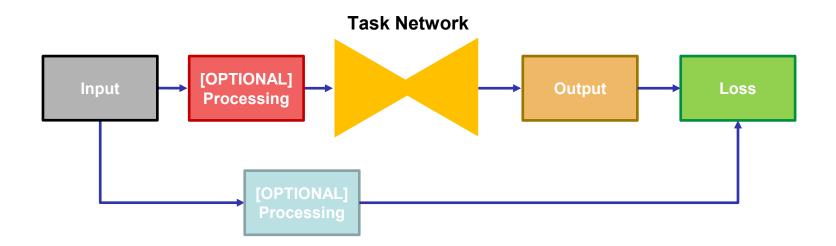
65.1

[**1**]

[1] Zhang, P., Zhang, B., Zhang, T., Chen, D., Wang, Y., & Wen, F. (2021). Prototypical pseudo label denoising and target structure learning for domain adaptive semantic segmentation. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (pp. 12414-12424).

Self-supervised learning

Self-supervised Tasks



Examples of Self-Supervised Tasks on Images

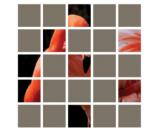
Image Colorization

Image Rotation

Auto-Encoder

Examples of Self-Supervised Tasks on Images

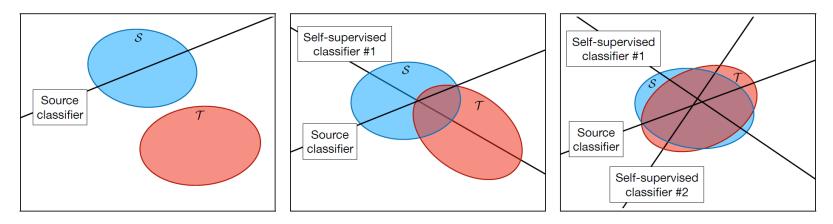
Denoising Auto-Encoder



Masked Auto-Encoders

Jigsaw Puzzle

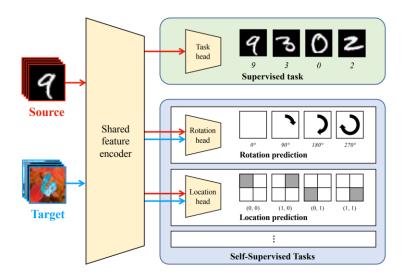
Self-supervised learning in UDA Self-Supervised Tasks as Auxiliary Tasks for Domain Alignment



Source domain is far away from the target domain, and a source classifier cannot generalize to the target.

Training a shared representation to support one self-supervised task on both domains can align the source and target along one direction. Using multiple self-supervised tasks can further align the domains along multiple directions.

Self-Supervised Tasks as Auxiliary Tasks



Select and correctly using the Auxiliary Tasks is difficult:

- It should help reasoning about the Target Task
- It should be "aligned" across domains (e.g., should not require capturing information on the factors where the domains are meaninglessly different)

Sun, Y., Tzeng, E., Darrell, T., & Efros, A. A. (2019). Unsupervised domain adaptation through self-supervision. arXiv preprint arXiv:1909.11825.

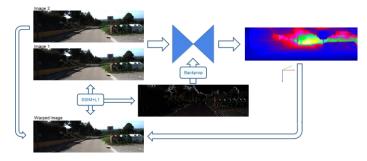
Self-Supervised Tasks as Auxiliary Tasks

Example: Colorization

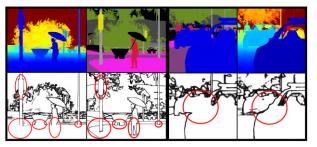
If used only on the target domain may help discriminability, i.e., reasoning how to color an image is connected to the object semantic. However, if performed on both source and target domain would make feature focusing on color, increasing the domain-gap.

Sun, Y., Tzeng, E., Darrell, T., & Efros, A. A. (2019). Unsupervised domain adaptation through self-supervision. arXiv preprint arXiv:1909.11825.

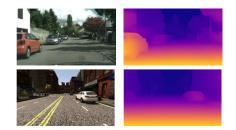
Some Reasons Why Depth can be a good Auxiliary Task for Semantic Segmentation



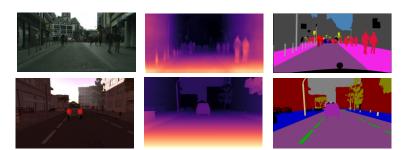
Depth can be addressed in a self-supervised manner



Depth and semantic share similar edge structure.



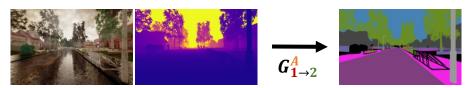
Depth Structures are Similar Across Domains



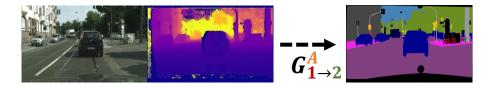
Correlations between tasks are moderately domain-invariant (e.g., road flat, sky far away).

Depth information can be useful for some geometric data augmentation

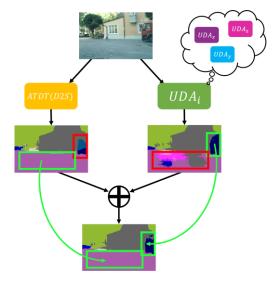
Self-Supervised Learning in UDA for Semantic Segmentation Self-Supervised Depth



Learning relationships between tasks in Source Domain with labels



Relationship generalize well across domains and can be used to extract information from the depth information



Semantic from depth is strong in areas with domaininvariant across tasks relationship.(e.g. sky is far and in top image regions).Merge with any other standard UDA method.

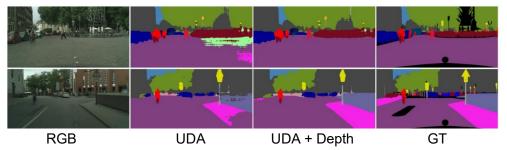
Cardace, A., De Luigi, L., Ramirez, P. Z., Salti, S., & Di Stefano, L. (2022). Plugging Self-Supervised Monocular Depth into Unsupervised Domain Adaptation for Semantic Segmentation. In *Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision* (pp. 1129-1139).

Self-Supervised Learning in UDA for Semantic Segmentation Self-Supervised Depth

Data Augmentation Depth Based for Self-Training

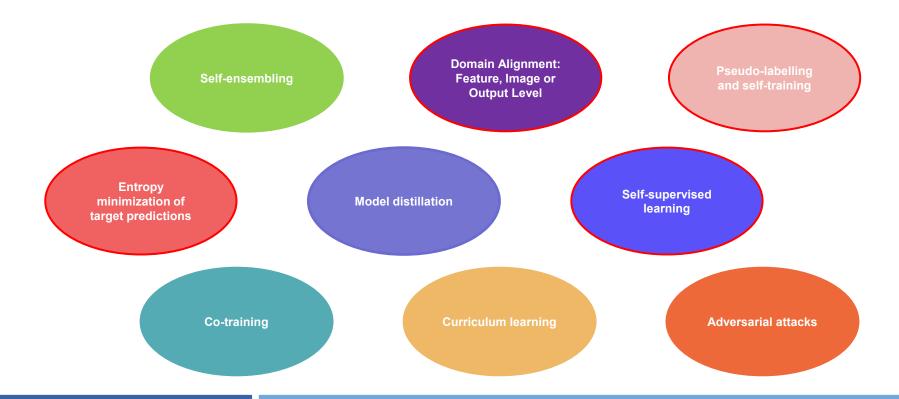
Self-Supervised Learning in UDA for Semantic Segmentation Self-Supervised Depth

Method	Road	Sidewalk	Building	Walls	Fence	Pole	T-light	T-sign	Vegetation	Terrain	Sky	Person	Rider	Car	Truck	Bus	Train	Motorbike	Bicycle	mIoU	Acc
AdaptSegNet [49]	86.5	36.0	79.9	23.4	23.3	23.9	35.2	14.8	83.4	33.3	75.6	58.5	27.6	73.6	32.5	35.4	3.9	30.1	28.1	42.4	85.6
D4-AdaptSegNet + DBST	93.1	53.0	85.1	42.8	27.3	35.8	43.9	18.5	85.9	39.0	89.9	63.0	31.6	86.6	39.8	36.7	0	42.4	35.0	50.0	90.3
MaxSquare [5]	88.1	27.7	80.8	28.7	19.8	24.9	34.0	17.8	83.6	34.7	76.0	58.6	28.6	84.1	37.8	43.1	7.2	32.2	34.5	44.3	86.9
D4-MaxSquare + DBST	92.9	51.2	84.7	43.5	22.2	35.7	42.5	20.0	86.2	42.0	90.0	63.7	33.0	86.9	45.5	50.9	0	42.2	41.4	51.3	90.3
BDL [28]	88.2	44.7	84.2	34.6	27.6	30.2	36.0	36.0	85.0	43.6	83.0	58.6	31.6	83.3	35.3	49.7	3.3	28.8	35.6	48.5	89.2
D4-BDL + DBST	93.2	52.6	86.4	44.1	31.2	36.5	42.4	36.1	86.3	41.0	89.8	63.3	37.4	86.3	42.8	57.8	0	40.3	37.9	52.9	90.7
MRNET [69]	90.5	35.0	84.6	34.3	24.0	36.8	44.1	42.7	84.5	33.6	82.5	63.1	34.4	85.8	32.9	38.2	2.0	27.1	41.8	48.3	88.3
D4-MRNET + DBST	93.2	51.6	86.1	45.9	24.5	37.9	47.4	40.4	85.3	37.5	89.6	64.7	39.8	85.8	41.1	53.2	8.9	17.1	33.4	51.7	90.0
Stuff and things* [55]	90.2	43.5	84.6	37.0	32.0	34.0	39.3	37.2	84.0	43.1	86.1	61.1	29.9	81.6	32.3	38.3	3.2	30.2	31.9	48.3	88.8
D4-Stuff and things + DBST	93.3	54.0	86.5	46.4	32.3	37.7	45.2	39.5	85.5	39.4	90.0	63.7	32.8	85.5	32.0	39.5	0	37.7	35.5	51.4	90.5
FADA [54]	92.5	47.5	85.1	37.6	32.8	33.4	33.8	18.4	85.3	37.7	83.5	63.2	39.7	87.5	32.9	47.8	1.6	34.9	39.5	49.2	88.9
D4-FADA + DBST	93.9	58.2	86.4	45.9	29.6	36.9	44.6	27.0	86.3	39.4	90.0	64.9	41.0	85.8	34.6	51.2	9.9	24.2	37.3	52.0	90.7
LTIR [22]	92.9	55.0	85.3	34.2	31.1	34.4	40.8	34.0	85.2	40.1	87.1	61.1	31.1	82.5	32.3	42.9	3	36.4	46.1	50.2	90.0
D4-LTIR + DBST	94.2	59.6	86.9	43.9	35.3	36.9	45.7	36.1	86.2	40.6	90.0	65.9	38.2	84.4	33.3	52.4	13.7	46.2	51.7	54.1	91.0
ProDA [64]	87.8	56.0	79.7	46.3	44.8	45.6	53.5	53.5	88.6	45.2	82.1	70.7	39.2	88.8	45.5	59.4	1.0	48.9	56.4	57.5	89.1
D4-ProDA + DBST	94.3	60.0	87.9	50.5	43.0	42.6	50.8	51.3	88.0	45.9	89.7	68.9	41.8	88.0	45.8	63.8	0	50.0	55.8	58.8	92.1

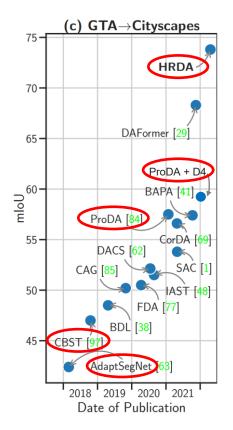


Overview & Conclusion

Overview of UDA Techniques Early 2022



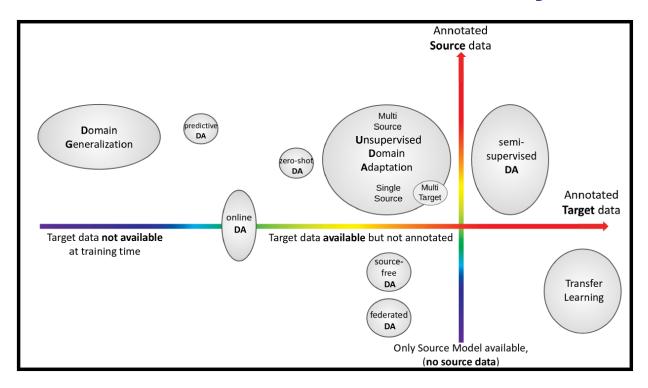
Quantitative Results 2018-2022



	Road	S.walk	Build.	Wall	Fence	Pole	Tr.Light	Sign	Veget.	Terrain	Sky	Person	Rider	Car	Truck	Bus	Train	M.bike	Bike	mIoU
	$GTA5 \rightarrow Cityscapes$																			
CBST [97]	91.8	53.5	80.5	32.7	21.0	34.0	28.9	20.4	83.9	34.2	80.9	53.1	24.0	82.7	30.3	35.9	16.0	25.9	42.8	45.9
DACS $[62]$	89.9	39.7	87.9	30.7	39.5	38.5	46.4	52.8	88.0	44.0	88.8	67.2	35.8	84.5	45.7	50.2	0.0	27.3	34.0	52.1
CorDA [69]	94.7	63.1	87.6	30.7	40.6	40.2	47.8	51.6	87.6	47.0	89.7	66.7	35.9	90.2	48.9	57.5	0.0	39.8	56.0	56.6
BAPA [41]	94.4	61.0	88.0	26.8	39.9	38.3	46.1	55.3	87.8	46.1	89.4	68.8	40.0	90.2	60.4	59.0	0.0	45.1	54.2	57.4
ProDA [84]	87.8	56.0	79.7	46.3	44.8	45.6	53.5	53.5	88.6	45.2	82.1	70.7	39.2	88.8	45.5	59.4	1.0	48.9	56.4	57.5
DAFormer [29]95.7	70.2	89.4	53.5	48.1	$\underline{49.6}$	55.8	59.4	89.9	47.9	92.5	72.2	44.7	92.3	74.5	78.2	65.1	55.9	61.8	68.3
HRDA	96.4	74.4	91.0	61.6	51.5	57.1	63.9	69.3	91.3	48.4	94.2	79.0	52.9	93.9	84.1	85.7	75.9	63.9	67.5	73.8

Hoyer, L., Dai, D., & Van Gool, L. (2022). HRDA: Context-Aware High-Resolution Domain-Adaptive Semantic Segmentation. arXiv preprint arXiv:2204.13132

Overview of Adaptation Scenarios w.r.t. Labeled Data Availability



Adaptation Scenarios w.r.t. Source and Target Label Sets Overlap

