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2 — Semantic Segmentation
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Image Classification

Input Output
Choose among
these categories

Dog
Cat
Bird
Frog
Person




Some challenges

o Occlusions
Intraclass variations

Viewpoint variations lllumination changes General weirdness of the world...
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Semantic Scene Understanding
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Source http://cs224d.stanford.edu/index.html




Semantic Image Segmentation

image semantic segmentation

Semantic segmentation:
classifying each pixel
belonging to a particular
label. It does not consider
different instances of the
same object.

Instance Segmentation:
Assigns a unique label to
every instance of a particular
object in the image.

Panoptic Segmentation:
Instance + Semantic
Segmentation

instance segmentation panoptic segmentation

Source: Sultana, F., Sufian, A., & Dutta, P. (2020). Evolution of image segmentation using deep convolutional neural network: a
survey. Knowledge-Based Systems, 201, 106062.
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Applications

N Medical Imaging
Self-Driving Car Virtual Fitting Rooms and Diagnostics

DeepLab V3 xception.cityscapes_trainfine (GTxas0M) IFUFS] Y -
Prediction time: 411ms (2.4 fps) AVG: 363ms (2.8 fps) | -




Dataset train/val images: 118K/5K

>100 categories

Trainval images: 11540 (6,929 segmentation masks)
20 categories

Common Objects in Context

e BOAE



train/val images: 20K/2K Dataset train/val images: 2750/500
150 categories 30 categories, 19 used
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CNN typically Classification Network

process images

reducing size and \
increasing the number Convolutions  Fully Connected

41 22
of channels o Layers tabby cat
HI16xW/16

Typically uses Fully Connected Layers as final
layers

600 .o |-

(RO RVt B r L
Ng‘spa‘t\l'al h Ir | ‘ l
resolution

Fixed Resolution

9° Higxwi/8

HxW

Fully Connected Fully-Connected
(H =W = C) flattened array Layer with N neurons Classifier
E.g., N =4096 with N, classes

(- =="

HxWxC Number of weights =
E.g., 7x7x256 N+H*W=xC

Long, J., Shelhamer, E., & Darrell, T. (2015). Fully convolutional networks for semantic segmentation. In Proceedings of the IEEE conference on
computer vision and pattern recognition (pp. 3431-3440).



.
Slow R-CNN for segmentation

27 classes if working on Pascal
VOC (20 + background)

CNN
backbone

ba((:)lx)r;lne ﬂ Cu,pv, = argmax(scoresy,y,)

Cu,v, = argmax(scoresy )

Slide window at all possible positions. Loss is the sum of the standard multi

No proposals, must process each pixel. class loss over all pixels

Girshick, R., Donahue, J., Darrell, T., & Malik, J. (2014). Rich feature hierarchies for accurate object detection and semantic segmentation. In Proceedings of the IEEE conference on
computer vision and pattern recognition (pp. 580-587).
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Fully Convolutional Networks (FCN)

Convolutions  Fully Connected
HI4xW/a Layers

“tabby cat”

HHGxWH6 Classification Network:

-~ ‘ e, l Uses Fully Connected Layers
d 1 | 2y in the final layers
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Fully Convolutional Network:
Convert Fully Connected into
Convolutional layers

I%(WM
Transforming fully connected layers into convolution layers enables a classification
net to output a heatmap. Adding layers and a spatial loss produces an efficient
machine for end-to-end dense learning.

Long, J., Shelhamer, E., & Darrell, T. (2015). Fully convolutional networks for semantic segmentation. In Proceedings of the IEEE conference on

computer vision and pattern recognition (pp. 3431-3440).
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Fully Convolutional Networks (FCN)

Convolutions

L] IV

tabby cat heatmap

Fully Convolutional Network:
Convert Fully Connected into
Convolutional layers
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Convolutionalization

Number of weights = N« H « W = C

e-¢e¢ee-S

Feature map
Number of weights = HxWxC
N+H*W=C E.g., 7x7x256

\
-
0000

N convolutional filters 1x1xN
HxWxC

Long, J., Shelhamer, E., & Darrell, T. (2015). Fully convolutional networks for semantic segmentation. In Proceedings of the IEEE conference on

computer vision and pattern recognition (pp. 3431-3440).
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Fully Convolutional Networks (FCN)

Upsampling the output to original resolution
(e.g., bilinear interpolation)

forward /inference

backward /learning
Pixel-wise loss
(e.g., Cross
Entropy)

Fully convolutional networks can efficiently learn to
make dense predictions for per-pixel tasks like semantic segmentation.

Long, J., Shelhamer, E., & Darrell, T. (2015). Fully convolutional networks for semantic segmentation. In Proceedings of the IEEE conference on
computer vision and pattern recognition (pp. 3431-3440).
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Fully Convolutional Networks

Upsampling
Input Nearest Neighbor Bilinear interpolation
112 1 T 2| 2 T |1.2511.75]| 2
3|4 11122 1.50|1.75(2.25| 2.5
e 31344 2.5 |2.75|3.25| 3.5
31314 |4 3 1325375 4
Cx4x4 Cx4x4

One way to perform upsampling can be to use standard, not-learned image
processing operators

Source: Samuele Salti, Machine Learning for Computer Vision, University of Bologna
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FCN-32s

Pixel-Wise
“Scoring” layer in FCN terminology: after this Cross Entropy Loss

layer, we have a s score for each class, but at a
resolution that depends on the backbone stride

Al

1x1 Conv, Bilinear
C_out =21, U le;a 30
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| | |
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Source: Samuele Salti, Machine Learning for Computer Vision, University of Bologna




Overfitting example
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Input Ground-Truth Annotation
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Source: Daniil Pakhomov & Vittal Premachandran. Dense-ai: Image Segmentation and Object Detection library
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Overfitting example

Argmax. |teration # 0 Probability of the Class. lteration # 0
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Source: Daniil Pakhomov & Vittal Premachandran. Dense-ai: Image Segmentation and Object Detection library
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Overfitting example

Argmax. Iteration # 1

Probablllty of the Class. Iteration # 1
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Source: Daniil Pakhomov & Vittal Premachandran. Dense-ai: Image Segmentation and Object Detection library
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Overfitting example

Argmax. Iteration # 2

Probability of the Class. Iteration # 2

Source: Daniil Pakhomov & Vittal Premachandran. Dense-ai: Image Segmentation and Object Detection library
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Overfitting example

Argmax. Iteration # 3 Probability of the Class. Iteration # 3
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Source: Daniil Pakhomov & Vittal Premachandran. Dense-ai: Image Segmentation and Object Detection library
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Overfitting example

Argmax. Iteration # 4 Probability of the Class. Iteration # 4
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Source: Daniil Pakhomov & Vittal Premachandran. Dense-ai: Image Segmentation and Object Detection library
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Overfitting example

Argmax. Iteration # 5 Probability of the Class. Iteration # 5
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Source: Daniil Pakhomov & Vittal Premachandran. Dense-ai: Image Segmentation and Object Detection library
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Overfitting example

Argmax. Iteration # 6 Probability of the Class. Iteration # 6
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Source: Daniil Pakhomov & Vittal Premachandran. Dense-ai: Image Segmentation and Object Detection library
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Overfitting example

Argmax. Iteration # 7 Probability of the Class. Iteration # 7
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Source: Daniil Pakhomov & Vittal Premachandran. Dense-ai: Image Segmentation and Object Detection library
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Overfitting example

Argmax. Iteration # 8 Probability of the Class. Iteration # 8
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Source: Daniil Pakhomov & Vittal Premachandran. Dense-ai: Image Segmentation and Object Detection library

100 |

150 |

200

250 |

300 |-

350




-
Overfitting example

Argmax. Iteration # 9 Probability of the Class. Iteration # 9
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Source: Daniil Pakhomov & Vittal Premachandran. Dense-ai: Image Segmentation and Object Detection library
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Overfitting example

Input image Input Ground-Truth Annotation
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Prediction is too coarse!
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Source: Daniil Pakhomov & Vittal Premachandran. Dense-ai: Image Segmentation and Object Detection library



Example of 1/32 image




What and Where

Global Information resolves what.
Local information resolves where.




High-Frequency Details: Skip Connections

8x upsampled
prediction (FCN-8s)

16x upsampled 2x upsampled

32x upsampled 2x upsampled
prediction (FCN-16s)|  prediction

prediction (FCN-32s)]  prediction
7 \ >
{ \
I ‘..a. ",
image pooll pool2 pool3 poold pogld | pool4 %’4 pool3 *Z: ______ a4
/'! prediction prediction 4
’// / ..'.
_________ J :
/
/
T

FCN-8s
Additional predictions from
pool3, at stride 8, provide
further precision.

FCN-16s
Final + pool4 layer, at stride
16. Predict finer details, while
retaining high-level semantic
information.

Single-stream FCN (FCN-32s)
upsamples stride 32
predictions to full resolution




Evaluation Metrics: mioU
Recall loU for Overlapping Boxes

To check if a prediction and a GT box overlap, we
measure the Intersection over Union (loU) score (aka
Jaccard index or similarity)

area of intersection

IoU(\(BB;,BB;) = :
oU(BB;, B;) area of union
|BB; N BB;|
~ |BBi| + |BBj| — |BBi N BBj]|

Source: Samuele Salti, Machine Learning for Computer Vision, University of Bologna



Evaluation Metrics: mloU

A
<

TP, = Z # pixels where y,,, = cand y,, = C
images A g

T

area of intersection

IoU, = .
¢ area of union

1

z (# pixels where y,,,, = c +

images

To compute mloU score for a dataset, we
average IoU, over classes:

c
1
mloU = C IoU,
c=1
Source: Samuele Salti, Machine Learning for Computer Vision, University of Bologna
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FCN Ablation on Skip Connections

FCN-32s FCN-16s FCN-8s Ground truth pixelacc. meanacc. meanlU fw.IU
/ FCN-32s 90.5 76.5 63.6 83.5
FCN-16s 91.0 78.1 65.0 84.3

FCN-8s at-once 91.1 78.5 65.4 84.4
FCN-8s staged 91.2 77.6 65.5 84.5

FCN-32s fixed 82.9 64.6 46.6 723
FCN-pool5 87.4 60.5 50.0 78.5
FCN-pool4 78.7 31.7 224 67.0
FCN-pool3 70.9 13.7 9.2 57.6

* No difference between training end-to-end (“at-once”)

Refining fully convolutional nets by fusing information from or coarse-to-fine (i.e., first train FCN-32s than add
layers with different strides improves segmentation detail. The skips and fine-tune, “staged” in the table).
first three images show the output from our 32, 16, and 8 pixel *  Fine-tuning the backbone is very important (fixed row
stride nets. is without fine-tuning)
With VGG backbone, found basically no improvements after : for instance, FCN-pool4 reports the (poor)
predicting from stride 8 activations (2 skips). quality of the predictions we get from strided16

activations, if we do not merge them with coarser data




Learned Upsampling: Encoder-Decoder

Encoder Decoder
224x224 224%224
1254  Convolution network Deconvolution network Lisxil
5656 56x56
28x28 28x28
x4 7 14x14
1x1 1x1
— ¢ ]
Max ,
ax, i U |
%)élin pooling - poolmg ............ - — rpecting Unpocling |
p%)é)ling p g' ................ — _.__‘_‘_‘___Enpoolmg L
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T ~npooling
.-"' \
DeconvNet:

* Encoder-Decoder
* Unpooling Layers
» Deconvolutions ( or Transposed Convolutions)
» Last layers are fully connected implemented as
convolutional (based on training dataset resolution)
 Instance-wise Segmentation

Noh, H., Hong, S., & Han, B. (2015). Learning deconvolution network for semantic segmentation. In Proceedings of the IEEE international conference on
computer vision (pp. 1520-1528).



Upsampling the predictions in the decoder

224%224 224%224

i 11251,
182132 convolution network Deconvolution ﬂetwnf; 55
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ey el
e ey

switch ;
= g
Pooling Unpooling

unpooled
map

Convolution Deconvolution

Noh, H., Hong, S., & Han, B. (2015). Learning deconvolution network for semantic segmentation. In Proceedings of the IEEE international conference on
computer vision (pp. 1520-1528).



Learned Upsampling: Encoder-Decoder

(]

Visualization of activations in the decoder of DeconvNet.
Finer details of the object are revealed, as the features are forward-
propagated through the layers in the decoder

Noh, H., Hong, S., & Han, B. (2015). Learning deconvolution network for semantic segmentation. In Proceedings of the IEEE international conference on

computer vision (pp. 1520-1528).
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FCN vs DeconvNet

Class-Conditional probability maps visualization

Input image FCN DeconvNet




Deconvolutions: Grid Artifacts

Deconvolutions in Semantic Segmentation

Deconvolutions in Image Generation

Partial Improvement:
Resize-Convolutions
(aka Up-Convolutions)
Upsampling NN + Convolution
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Deconvolutions: Grid Artifacts

Deconvolution in last two layers. Deconvolution only in last layer. All layers use resize-convolution.
Artifacts prior to any training. Artifacts prior to any training. No artifacts before or after training.

Odena, A., Dumoulin, V., & Olah, C. (2016). Deconvolution and checkerboard artifacts. Distill, 1(10), e3.




SegNet

Convolutional Encoder-Decoder

Output

Pooling Indices

RGB Image B conv + Batch Normalisation + ReLU Seg mentation
B Pooling I Upsampling Softmax
SegNet:

» Fully-convolutional (no fully-connected)
* Encoder-Decoder
* Decoder: Unpooling Layers (as DeconvNet) + Convolution

Badrinarayanan, V., Kendall, A., & Cipolla, R. (2017). Segnet: A deep convolutional encoder-decoder architecture for image
segmentation. IEEE transactions on pattern analysis and machine intelligence, 39(12), 2481-2495.




Qualitative Comparison

| ] N
Test samples s

Ground Truth

SegNet

FCN
FCN (learn deconv)

DeconvNet

Badrinarayanan, V., Kendall, A., & Cipolla, R. (2017). Segnet: A deep convolutional encoder-decoder architecture for image
segmentation. IEEE transactions on pattern analysis and machine intelligence, 39(12), 2481-2495.
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Encoder

Decoder

Recovering low-level information: U-Net

U-Net

Fully-convolutional
Encoder-Decoder
Decoder: Up-Convolutions
More Skip-connections

Skip connections use concatenation instead of
summation as in FCN.

2x2 stride 2 transposed convolutions (“up
convolutions”) are used to upsample the
activations in the decoder, while halving the
number of channels.

Normal 3x3 convolutions are used in the
decoder as well: with further processing, even
initial layers of the backbone can effectively
contribute to the final segmentation mask, as
opposed to what happened in FCN.

Ronneberger, O., Fischer, P., & Brox, T. (2015, October). U-net: Convolutional networks for biomedical image segmentation. In International Conference on
Medical image computing and computer-assisted intervention (pp. 234-241). Springer, Cham.



Dilated Convolutions

Stage L
(stride 32)

Predicting from this activation has rich
semantic info due to depth of processing
and large receptive field but is spatially
coarse

Computing segmentation mask from this activation has detailed

SXHXW — resolution but smaller receptive field and not enough

semantic info

Is the architecture inherited by classification backbones the best one for semantic segmentation

(or dense tasks in general)?

We would like to have rich features with large spatial resolutions, large receptive fields and

constant cost.
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Atrous Convolution

Dilated (or «atrous ») convolutions expose an additional parameters, the dilation rate r. Equivalent to inserting
holes (‘ trous ’ in French) between filter weights. =1 gives the usual, dense, convolution.

(K 1130, )) = iZZKn(m,l)In(j—rm,i —rD+b
n=1m 1

[kl o JoJo[ka] 0] oo [k
oflofolololofolo]o
oflofolololofolo]o
oflofolololofolo]o

[Kea] o [0 [ o] o] oo [k
ofloJolololo]o]o]o
oloJolololo]o]o]o
oflofolololo]olo]o

[Kea] 0 [ o o [me| 000 |kes]

3x3 kernel 3x3 kernel 3x3 kernel
r=1 r=2 r=4

Chen, L. C., Papandreou, G., Kokkinos, I., Murphy, K., & Yuille, A. L. (2017). Deeplab: Semantic image segmentation with deep convolutional nets, atrous
convolution, and fully connected crfs. IEEE transactions on pattern analysis and machine intelligence, 40(4), 834-848.
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Atrous Convolution (2D)

downsampling convolution upsampling
stride= 2 kernel=7 stride=2
i .ve
a:::l " - - -
— 13 > a0 el
vl atrous convolution ‘I. "
kernel=7 ~ — A
rate= 2 . . ‘
stride=1 ==

Sparse feature extraction with
standard convolution on a low-
resolution input feature map.

Dense feature extraction with
atrous convolution with rate r=2,
applied on a high-resolution
input feature map.

Chen, L. C., Papandreou, G., Kokkinos, I., Murphy, K., & Yuille, A. L. (2017). Deeplab: Semantic image segmentation with deep convolutional nets, atrous
convolution, and fully connected crfs. IEEE transactions on pattern analysis and machine intelligence, 40(4), 834-848.
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Atrous Convolution

If we stack dilated convolutions with exponentially increasing dilation rate r; = 2!, the effective receptive field
grows exponentially with the number of layers, while the number of parameters grows linearly, and resolution is not
reduced.

In general, at level [ the receptive field of an activation entry will be (2*1 — 1) = (211 — 1). For instance, at level 3 below, the
receptive field is 15x15, while with dense 3x3 convolutions it would have
been 7x7.

Input image

RN
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Going Deeper: Convolutions vs Atrous Convolutions

Convl
+
Pooll Blockl Block2 Block3 Block4 Blockb Block6 Block7?
e - — — — D —_— 0 — [
output
Image e 4 8 16 32 64 128 256 256

(a) Going deeper without atrous convolution.

Convl rate=2 rate=4 rate=8 rate=16
+
Pooll Blockl Block2 Block3 Block4 Block5 Blockt Block7
—_— > — E] > Eﬂ I E:ﬂ
output
Image coge 4 8 16 16 16 16 16 16

(b) Going deeper with atrous convolution. Atrous convolution with rate > 1 is applied after block3 when output_stride = 16.

Convolutions and downsampling increase receptive field.
However, several spatial information and high-frequency details are lost.




Deeplabv1

Challenge 1: reduced feature resolution -> Atrous Convolutions

Input DCNN Aeroplane Coarse

Score ma|l

Atrous Convolution
' Deeplab v1:

* Full Convolutional
¥ Atrous Convolution

Final Output Fully Connected CRF Bi-linear Interpolation * Fully Connected

rq Conditional Random
- @ o
- -4

Challenge 2: reduced localization accuracy due to DCNN invariance -> CRF

A deep convolutional neural network such as VGG-16 or ResNet-101 is employed in a fully convolutional
fashion, using atrous convolution to reduce the degree of signal downsampling (from 32x down 8x). A bilinear
interpolation stage enlarges the feature maps to the original image resolution. A fully connected CRF is then
applied to refine the segmentation result and better capture the object boundaries.

Chen, L. C., Papandreou, G., Kokkinos, I., Murphy, K., & Yuille, A. L. (2017). Deeplab: Semantic image segmentation with deep convolutional nets, atrous
convolution, and fully connected crfs. IEEE transactions on pattern analysis and machine intelligence, 40(4), 834-848.




Objects Appears at Different Scales and Resolutions




Image Pyramid
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Merging score maps (i.e., last layer output before SoftMax) for two scales.




Attention to Scale

g bl The attention model learns to put
k different weights on objects of
different scales.

Deep Convolutional

Neural Network [egll SCO'€ Map fu g

1]
"
1
Attentionto | BINTENE
Scale - Model \ P
1
1
: ’ .
1

Result For example, the model learns to
put large weights on the small-scale
person (green dashed circle) for
features from scale = 1, and large
weights on the large-scale child
(magenta dashed circle) for
features from scale = 0.5.

Image with scale il

_|

Deep Convolutional il M
Neural Network ST

The network component and the
attention model are trained jointly.

Chen, L. C,, Yang, Y., Wang, J., Xu, W., & Yuille, A. L. (2016). Attention to scale: Scale-aware semantic image segmentation. In Proceedings of the IEEE conference on computer
vision and pattern recognition (pp. 3640-3649).
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Attention to Scale
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Hierarchical Multiscale Attention

Scale |

Training and Inference

@ element-wise multiplication

@ element-wise addition

upsample
downsample

Architecture from Attention to Scale, where the
attention for each scale is learned explicitly.

Scale 2

Scale |

Training

An illustration of the training
pipeline, whereby the network
learns to predict attention

—* Output between adjacent scale pairs.

Training dataset is already
online augmented thus the
network sees a lot of scales.

Scale 3

Scale 2

Inference

Hierarchical attention architecture.

Inference is performed in a
chained/hierarchical manner in
order to combine multiple scales of
predictions. Lower scale attention
determines the contribution of the
next higher scale.

Tao, A., Sapra, K., & Catanzaro, B. (2020). Hierarchical multi-scale attention for semantic segmentation. arXiv preprint arXiv:2005.10821.
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Complex Scene Example




Complex Scene Example




Complex Scene Example
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Complex Scene Example

= - T r —— —1 T ==t Joe
- e
a e .

Context can be crucial to correctly classify an object.



Complex Scene Example

Mismatched Relationship Car or Boat?
Objects are similar. However, context
may guide us (there is water..)

Confusion Categories Building or Skyscraper?
With a large enough receptive field we would
understand that is the same object.

Inconspicuous Classes Pillow or Sheet?
Objects may be really small, overlooking
at the global scene category may fail to
parse such objects

Many errors are partially or completely related to contextual relationship and global information for
different receptive fields.
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Complex Scene Examples

Images may contain objects at very different scales and resolutions.

We can extract different context information depending on image resolution and network receptive
field. Context can be crucial to correctly classify an object (e.g., water not trees)
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Encoding multi-scale semantics: Pyramidal Networks
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(a) Input Image (b) Feature Map (¢) Pyramid Pooling Module (d) Final Prediction

PSPNet
e Full Convolutional
« SPP

Zhao, H., Shi, J., Qi, X., Wang, X., & Jia, J. (2017). Pyramid scene parsing network. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp.
2881-2890).




PSPNet vs FCN
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Recap:
Alternative Architectures To Capture Multi-scale Context
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(a) Image Pyramid (b) Encoder-Decoder (c) Deeper w. Atrous Convolution (d) Spatial Pyramid Pooling




Deeplab v2

Atrous Convolution + Spatial Pyramidal Pooling (SPP): ASPP

rate = 24
- e —_
rate = 6 rate = 12 m m—
-
N L ] 1 [
S — I
—_—

Atrous Spatial Pyramid Pooling

Input Feature Map /7
Deeplabv2

» Deeplabv1 + ASPP

Use of Atrous Spatial Pyramid
Pooling (ASPP). The idea is to
apply multiple atrous convolution
with different sampling rates to the
input feature map, and fuse
together. As objects of the same
class can have different scales in
the image, ASPP helps to account
for different object scales which
can improve the accuracy.

Chen, L. C., Papandreou, G., Kokkinos, I., Murphy, K., & Yuille, A. L. (2017). Deeplab: Semantic image segmentation with deep convolutional nets, atrous
convolution, and fully connected crfs. IEEE transactions on pattern analysis and machine intelligence, 40(4), 834-848.
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Problem of atrous convolution with large rates

Padding T1x17 Input image

RN

[

~

d

When the dilation rate grows, the number of positions where all the 9 weights of the kernel are used
(i.e. are not multiplied by zero padding) shrinks.
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Problem of atrous convolution with large rates

Normalized count

|1 valid weight ||
—=—4 valid weights
_a . —=—9valid
0 20 40 60 80
atrous rate

Normalized counts of valid weights with a 3x3 filter on a 65x65 feature map as atrous rate
varies. When atrous rate is small, all the 9 filter weights are applied to most of the valid
region on feature map, while atrous rate gets larger, the 3x3 filter degenerates to a 1x1

filter since only the center weight is effective.



Deeplab v3

Encoder Modifications and Training Improvements

Encoder
(a) Atrous Spatial

Pyramid Pooling
] 1x1 Conv

Convl rate=2 EH 3x3 Conv Concat
+ rate=6 +

Pooll Blockl Block2 Block3 Block4 axzconv | 1x1 Conv

—r1 re— - E E—— rate=12 —-
M
output Zalan
Image e 4 8 16 16 16
mage Pooli Maximum Rate is Smaller
. W (18 instead of 24)

A

Instead of increasing atrous convolutions rate, they do image pooling.
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Deeplab v3

Encoder Modifications and Training Improvements

Added Batch Normalization. Regularize training and better convergence. Pretrain with
/ larger batch (16) and larger stride (16) to learn better statistics.
Training
Improvements

Batch Norm

A AA
AV AV
LSS

A eAYAVi

loffe, S., & Szegedy, C. (2015, June). Batch normalization: Accelerating deep network training by reducing internal covariate shift. In International conference on
machine learning (pp. 448-456). PMLR.
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Deeplab v3

Encoder Modifications and Training Improvements

Added Batch Normalization. Regularize training and better convergence. Pretrain with
larger batch (16) and larger stride (16) to learn better statistics.

Training
Improvements

Large Crop Size. To capture enough context information, we need a large crop size




Deeplab v3

Encoder Modifications and Training Improvements

Added Batch Normalization. Regularize training and better convergence. Pretrain with
larger batch (16) and larger stride (16) to learn better statistics.

Training Large Crop Size. To capture enough context information, we need a large crop size
Improvements
Upsampling Logits. Previous Deeplabs downsample the GT. From Deeplabv3 upsample
the logits to match GT resolution (more high-resolution information in the gradient).
Logits
HyxWixC

Upsample \

Original High-Resolution GT

Loss HyxW,

Upsampled Logits
HzXszC







Deeplab v3+
Adding Decoder

“Encoder

| macew) —{| |

rate6 |
3x3 Conv
rate 12 | %
3x3 Conv e
rate 18
Image
\_ | Pooling | =™

“Decoder ,
Upsample |
Low-Level by 4 «

Features

>ﬁ+

)

A N N R

N ) _
1x1 Conv| —» @_. _,@_, 563 Cony|—»{ UPS2PE |

Deeplab v3+

* Fully-convolutional

 Encoder-Decoder

» Decoder: Up-Convolutions +
Skip Connections

» Atrous Convolutions

« ASPP (with Image Pooling)

Prediction

Still one of the most popular semantic segmentation network!

Chen, L. C., Zhu, Y., Papandreou, G., Schroff, F., & Adam, H. (2018). Encoder-decoder with atrous separable convolution for semantic image segmentation. In Proceedings of the European
conference on computer vision (ECCV) (pp. 801-818).




Deeplab v3+
Adding Decoder

Image w/ BU w/ Decoder

Chen, L. C., Zhu, Y., Papandreou, G., Schroff, F., & Adam, H. (2018). Encoder-decoder with atrous separable convolution for semantic image segmentation. In Proceedings of the European

conference on computer vision (ECCV) (pp. 801-818).
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Recent Advances: NAS and Transformers

Neural Architecture Search (NAS) Vision Transformer
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Liu, C., Chen, L. C., Schroff, F., Adam, H., Hua, W., Yuille, A. L., & Fei-Fei, L. (2019).
Auto-deeplab: Hie;rarchical neural architecture search for semanti; i'mage segmentation. Xie, E., Wang, W., Yu, Z., Anandkumar, A., Alvarez, J. M., & Luo, P. (2021).
In Proceedings of the IEEE/CVF conference on computer vision and pattern SegFormer: Simple and efficient design for semantic segmentation with
recognition (pp. 82-92). transformers. Advances in Neural Information Processing Systems, 34.
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Quantitative Results

| Method | Encoder | Params | | ADE20K | Cityscapes
| | | Flops | FPST mloU® | Flops | FPS+ mloU

FCN [1] MobileNetV?2 9.8 39.6 64.4 19.7 317.1 14.2 61.5

ICNet [11] - - - - - - 30.3 67.7

E PSPNet [17] MobileNetV?2 13.7 52.9 57.7 29.6 423.4 11.2 70.2

iZ= | DeepLabV3+ [20] MobileNetV?2 15.4 69.4 43.1 34.0 5554 8.4 75.2

E 8.4 50.5 374 125.5 15.2 76.2

. - - - 51.7 26.3 75.3

SegFormer (Ours) MiT-BO 3.8 ) ) ) 315 371 737

- - - 17.7 47.6 71.9
End 2014 FCN [1] ResNet-101 68.6 275.7 14.8 414 2203.3 1.2 76.6]
EncNet [04] ResNet-1011 551 2188 14 9 447 1748 () 1.3 760

PSPNet [17] ResNet-101 68.1 256.4 15.3 444 2048.9 1.2 78.5

L | CCNetl11] ResNet-101 G809 7R 4 141 452 2794 R 1.0 202

E DeeplabV 3+ [20] ResNet-101 62.7 255.1 14.1 44.1 2032.3 1.2 80.9

—= | OCRNet [25] HRNet-W4§ 70.5 164.8 17.0 45.6 1296.5 4.2 81.1

& | GSCNN [35] WideResNet38 - - - - - - 80.8

g Axial-DeepLab [74] AxialResNet-XL - - - - 2446.8 - 81.1

Z | _Dynamic Routing [75] | Dynamic-L33-PSP - - - - 270.0 - 80.7
Auto-Deeplab |50 NAS-F48-ASPP - - - 44.0 695.0 - 80.3

SETR|/] Vril-Large 318.3 - 34 50.2 - 0.5 82.2

v SegFormer (Ours) MiT-B4 64.1 95.7 15.4 51.1 1240.6 3.0 83.8
End 2021 SegFormer (Ours) MiT-B5 84.7 183.3 9.8 51.8 1447.6 2.5 84.0




SegFormer: Simple and Efficient Design for Semantic

Segmentation with Transformers

Enze Xie, Wenhai Wang, Zhiding Yu, Anima Anandkumar, Jose M. Alvarez, Ping Luo

The University of Hong Kong Nanjing University NVIDIA Caltech



Thank you for your attention!
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