
Deep Scene Understanding from Images

for Monitoring Applications

Matteo Poggi, Fabio Tosi, Pierluigi Zama Ramirez

Computer Vision Lab (CVLab), University of Bologna

About us:

Matteo Poggi (RTDB @ CVLab)

Fabio Tosi (postDoc @ CVLab)

Pierluigi Zama Ramirez (postDoc @ CVLab)

Our goal

We wish to show you cool applications and results in the field of computer vision, without limiting too

much the scope of our course. We also hope to include attendees with any degree of expertise

Whole human knowledge

Deep Scene Understanding and related tasks

knowledge

Depth estimation knowledge

Whole Computer Vision knowledge You are

going to

land here!

Credits: https://htwins.net/scale2/

Broad Topics

Problems and methods to extract knowledge about the surrounding environment from images

Prerequisites

"Basic" knowledge about computer vision* and deep learning (CNNs in particular)

* the very basic, necessary concepts will be introduced, so do not worry :)

Who is the course thought for?

Schedule:

6 lessons (3 hours each), final exam (2 hours)

• Lesson 1 (July 17, 10.00-13.00)

• Lesson 2 (July 18, 10.00-13.00)

• Lesson 3 (July 19, 10.00-13.00)

• Lesson 4 (July 24, 10.00-13.00)

• Lesson 5 (July 25, 10.00-13.00)

• Lesson 6 (July 26, 10.00-13.00)

• Final exam (July 27, 10.00-12.00)

The final exam will consist of a report about one paper/topic discussed in lessons 1-6

Either during the dedicated lecture (July 27), or later at your convenience

1- Introduction

Summary of contents:

• Scene understanding, what and where:

an introduction to scene understanding, why we do need it, digital images, some basic information we

can extract from them and related problems

• Analytical vs Data-Driven approaches:

how to approach to computer vision problems, algorithms vs neural networks, Convolutional Neural

Networks (CNNs)

• Supervision paradigms:

basic principles to train a deep learning-based approach to deal with computer vision problems,

advantages, limitations and costs

Scene understanding, what and where

Interpreting the environment around us and the agents interacting with it is an important prerequisite

necessary to design several applications

For instance, let's suppose we want to implement an assistive/autonomous driving system.

To properly navigate through traffic, our vehicle needs to be aware of what is happening around it.

Credits: https://ps.is.mpg.de/projects/scene-understanding

Scene understanding, what and where

In the last years, we witnessed a race towards implementing autonomous driving systems.

A common taxonomy of systems has been defined, according to the level of automation deployed:

Level 0: No Driving automation – The driver entirely control the vehicle

Level 1: Driver Assistance – Basic assitance in breaking or steering (adaptive cruise control/breaking)

Level 2: Partial Automation – ADAS, assistance in both breaking and steering (Tesla AutoPilot)

Level 3: Conditional Automation – ADAS programmed with environmental detection features, allowing

for self-drive in certain conditions (Audi Traffic Jam Pilot)

Level 4: High Automation – higher-level assistant capable of making decisions when ADAS fails, with a

human passenger still present (thought for driverless taxi/vehicles on a fixed route)

Level 5: Full Automation – the vehicle is entirely autonomous and can drive everywhere (no pilot)

Scene understanding, what and where

Our system should both know what is facing and where.

In the case of a driving agent, some examples of meaningful information are:

What (semantical content)

• Understand traffic signals/lights

• Recognize sidewalks/pedestrian crossing from the road

• Detect other vehicles and classify them (cars/trucks/bicycles...)

• ...

Where (geometric content)

• Estimating the free-space in front of our vehicle

• Finding out the distance to the closest obstacle

• Understanding the trajectories of the nearby vehicles

• ...

Scene understanding, what and where

How can we collect these cues? With sensors!

Laserscanner: it emits signals to measure the distance

of objects over which they impact. Allows to reconstruct

the 3D structure of an environment.

Alternatives: sonars, radars, …

Weaknesses: sparse measurements.

GPS: records the position of the vehicle on a global

system. Allows to know movements, trajectories etc.

Alternatives: IMU, …

Weaknesses: can’t tell anything about other vehicles.

Camera: collects images of the environment, from which we can extrapolate several information.

Literally, “A picture is worth a thousand words”.

Weaknesses: we need algorithms to extract information!

Credits: http://www.cvlibs.net/datasets/kitti/

Digital images and pixels

Let’s zoom into a digital image…

Digital images and pixels

Digital images are collected by means of physical sensors

An imaging sensor consists of a grid of photosensitive elements

The resolution of a camera depends on the size of such a matrix

Color images are usually obtained through different filters and

interpolation
Credits: https://www.digitaltrends.com/photography/quanta-image-sensor-low-light-camera/

Credits: https://en.wikipedia.org/wiki/Image_sensor

Credits: https://en.wikipedia.org/wiki/Image_sensor

Digital images and the real world

When a scene is captured through a camera, we

project 3D points into a 2D space (image plane)

This mapping is not one-to-one: a theoretically

infinite set of scenes can lead to the same image

(for instance, black vs red houses on the right)

The appearence of the image we capture is

consequence of sensor properties such as

resolution, camera parameters (or intrinsics), lens, etc.

Moreover, it also depends on the camera position (t) and

orientation (R) in the world (extrinsics)

Credits: https://www.mathworks.com/help/vision/ug/camera-calibration.html

Credits: https://www.mathworks.com/help/vision/ug/camera-calibration.html

Digital images and pixels

An image is a 2D matrix (usually encoding 8bit values, from 0 to 255)

We can modify/replace/process the image content by means

of operations over the matrix itself.

Some examples:

• Color inversion

image[i,j] = 255 - image[i,j]

• Convolution (correlation)

image[i,j] = sum(image[y,x]*kernel[y,x]

for y in i-2,i+2 and x in j-2,j+2)

• … more!

Digital images and pixels

Convolution

Scene understanding, what and where

As humans, we can easily answer to many of these questions with our eyes.

What can we tell about this scene from a single image?

• We are on a road, probably driving forward

• We have a red car nearby (yet not directly in front of us), probably driving forward too

• The nearest vehicle (the red car) is probably 10-15 meters away

• ...

Scene understanding, what and where

As humans, we can easily answer to many of these questions with our eyes.

What can we tell about this scene from two consecutive image?

• We are definitely driving forward

• The red car is moving slower than us

• ...

Scene understanding, what and where

As we do extract this knowledge from images, we can do the same by means of computer vision and

deep learning methodologies

Colormaps

A colormap implements a mapping from a grayscale color space into an RGB(A) one. It is often used to

enhance visual perception of some patterns.

Example: a depth map encoding in each pixel its distance from the camera

Colormaps are meaningful from a qualitative point of view (red pixels are closer than yellow pixels),

while they are not meaningful of real depth values, unless the mapping is reversible (often, it is not).

While in this case we can easily perceive the relative distance between pixels without a colormap, in

other cases (such as semantic segmentation or optical flow, see later) it becomes much harder

close

far

Semantic segmentation

The category into which each pixel is classified is also known as semantic class. It distinguishes

portions of the image belonging to different elements in the scene (road, cars, vegetation, etc.),

representing a pixel-level classification of the image

Semantic segmentation

The category into which each pixel is classified is also known as semantic class. It distinguishes

portions of the image belonging to different elements in the scene (road, cars, vegetation, etc.),

representing a pixel-level classification of the image

Depth

The distance between each point in the scene and the camera itself is also known as depth. It can

be estimated either in absolute or relative scale, from one or multiple images.

Depth

The distance between each point in the scene and the camera itself is also known as depth. It can

be estimated either in absolute or relative scale, from one or multiple images.

Optical Flow

The motion between corresponding pixels in two, consecutive images is known as optical flow.

For each pixel in a frame, a 2D vector encodes the (x,y) translation which brings it to the new coordinates

in the subsequent frame.

Optical Flow

The motion between corresponding pixels in two, consecutive images is known as optical flow.

For each pixel in a frame, a 2D vector encodes the (x,y) translation which brings it to the new coordinates

in the subsequent frame.

Scene understanding, more tasks!

More and more tasks aimed at estimating information about "what" and "where" exists

… and more!!! http://www.cvlibs.net/datasets/kitti/index.php

Object detection

Instance segmentation

SLAM (Simultaneous

localization and Mapping)

http://www.cvlibs.net/datasets/kitti/index.php

Scene understanding and applications

Autonomous driving is one of many applications we can implement starting from a basic understanding of

the environment

Credits: https://theconversation.com/what-is-augmented-reality-anyway-99827

Credits: https://www.forbes.com/sites/forbestechcouncil/2021/12/10/the-state-

of-augmented-reality/

Augmented reality
Captioning

Credits: https://dcmp.org/learn/5-captioning-guidelines-for-the-dcmp

Monitoring

Analytical vs Data-Driven models

We can design a variety of algorithms to process images and extract cues such as those shown so far

(and many more!). We can classify these algorithms in two, main families:

Analytical (or model-based):

Algorithms belonging to this category are designed from scratch by the developer, who is necessarily

driven by explicit knowledge about the problem itself. This solution is usually feasible for problems

founded on strong priors (e.g., geometry)

Data-driven (or learning-based):

Methods belonging to this family implicitly learn a solution to the problem from data, for instance by

means of neural networks. This approach is often necessary for problems for which strong priors do

not exist. Anyway, given enough training data, it can "solve" most computer vision problems

The best results are often obtained combining the best of the two worlds

Analytical vs Data-Driven models

An example of problem which can be tackled by both families of approaches is depth estimation from

multiple images - for instance two images, also known as stereo matching problem.

In this setup, depth is computed through

triangulation, by finding the position of the very

same pixel on the two images and its

variation (disparity).

This can be carried out with "simple" hand-crafted

algorithms, measuring the (dis)similarity between

pixels across the images.

Dleft (x,y) = argmind || cleft (x,y) – cright (x-d,y) ||

with ck being the color of a pixel at coordinates (x,y) on image k

Credits: https://medium.com/mini-distill/pps-efficient-deep-learning-for-stereo-

matching-de253fc411d4

Analytical vs Data-Driven models

Until 2015, any stereo algorithm was model-based (the most famous: SGM).

In 2016, the very first deep network for stereo was proposed (DispNet).

Nowadays, deep stereo networks are standard solutions for this task, often combining model-based

design strategies with deep learning.

2015

2016

Now

Computer Vision and Machine Learning

These two worlds got in touch several decades ago

On of the pivotal tasks carried out on images by means of machine learning is image classification:

given a single picture, we want to assign it a single label among N known labels, distinctive of the content

shown in the picture itself

One of the most popular example: MNIST dataset

Neural Networks (NNs)

NNs and variants are among the most spread models in machine learning

Multi-Layer Perceptrons (MLPs) represented for a long time one of the most popular choices in several

research areas. They consist of a set of multiple layers made of several nodes, each of them connected

to any node from the previous layer (or fully-connected). Each connection defines a weight, learned by

means of back-propagation

How can we process an image by means of a NN?

Features extraction

This naive approach has several disadvantages (scaling, invariance, etc.)

A very popular alternative in the early 2000s consisted of extracting some features from images

A feature represent a salient property of the image. Defining a good set of features for a specific task is

extremely challenging (requires high expertise on the specific task)

Example: face detection (Harr features, used by Viola-Jones algorithm)

Convolutional Neural Networks (CNNs)

CNNs are the most popular deep learning framework in computer vision.

The use of convolutional layers make them perfectly suited for image processing.

Early works (late '80) using CNNs in vision aimed at solving per-image classification tasks (assigning a

category to an entire image according to its content).

For this task, CNNs where usually made of two modules: a feature extractor, made of convolution

layers, and a classifier, made of fully-connected layers used in standard NNs (MLPs)

Credits: https://tech.everyeye.it/

Convolutional Neural Networks (CNNs)

Convolutional layers are defined as a set of learnable weights organized into kernels.

The input image is processed through the layer by performing convolution (actually, correlation)

between it and the kernel.

Differently from MLPs, convolutions result much more efficient and introduce some properties (locality,

translation invariance, etc.)

Convolutional Neural Networks (CNNs)

The features extractor learns a hierarchy of features, directly from data through back-propagation

The earliest features extracted by the first convolutional layers are at low-level (edges, corners, etc.),

while those extracted through deeper layers will gain higher and higher representation power

Credits: https://www.datasciencecentral.com/a-primer-on-deep-learning/

Convolutional Neural Networks (CNNs)

Convolutional layers can be generalized to abritrary dimensions, to deal with higher-dimensional

structured data. For instance, we can implement a 3D CNN made of 3D convolutional layers. This is

quite common when dealing with stereo depth estimation (see next lectures…)

We can even push it further and implement 4D CNNs, made of 4D convolutional layers, for instance if

we need to model spatio-temporal information (or when dealing with optical flow, see next lectures…).

Main problem: computational costs

Credits: https://towardsdatascience.com/understanding-1d-and-3d-convolution-

neural-network-keras-9d8f76e29610

Convolutional Neural Networks (CNNs)

The the great results achieved by CNNs has also impacted on the research trends in academia and

industry, allowing to succesfully tackle tasks which were particularly hard to face before

"Semantic Segmentation"

"Deep Learning"

Convolutional Neural Networks (CNNs)

CNNs deals with tasks mentioned so far by either solving classification or regression problems.

In the case of classification problems, the network aims at assigning a class label to a specific input

data point. The number of classes is usually finite and defined.

The CNN output consists of a vector of N values (for N classes) and is interpreted as a probability

distribution of the input point to belong to any of the N classes. The class assignited by the CNN is the

one corresponding to the output having highest value

Credits: https://www.geeksforgeeks.org/ml-classification-vs-regression/

Convolutional Neural Networks (CNNs)

In the case of regression problems, the network aims at inferring continuous values to a specific input

data point.

Considering the three tasks so far, we can generally distinguish them into classification (semantic

segmentation, in which we usually know the exact number of classes we aim at recognizing) and

regression (depth and optical flow, for which we can estimate continuous, floating point values) problems

as well.

We might also tackle depth estimation as a classification problem as well (for instance, by defining a set

of depth bins and classifying any pixel in a single image to its proper depth bin)

Credits: https://en.wikipedia.org/wiki/Linear_regression

Convolutional Neural Networks (CNNs)

Modern CNNs often deal with dense prediction tasks, for which a different output is predicted for any

pixel in the input image.

This is possible by designing a CNN to be fully convolutional, made only of convolution (or

devoncolution) layers. This allows to keep a spatial structure of the output prediction.

The same principle applyies to higher-dimensional CNNs (3D, 4D, etc.)

In the very last years (2020-today), other architectures are becoming popular, such as Vision

Transformers, MLP-Mixer, etc.

Credits: https://www.medium.com

Convolutional Neural Networks (CNNs)

To implement a fully-convolutional network, we either need to:

• maintain the original input resolution (unfeasible, most of the times)

• implement a layer to restore the initial resolution

Transposed convolution (or deconv layer): reverting the shape of a conv layer

Alternatives: upsampling (nearest/bilinear) + conv layer

+
+

Conv Layer Deconv Layer

(Transposed conv)

Convolutional NN vs Fully-Convolutional NN

"cat"

"cat"

"sky"

Classification:

Semantic Segmentation:

Fully Connected + Softmax

Pixel-wise Softmax

Supervision paradigms

CNNs (and, in general, machine learning frameworks) are data-driven approaches. Specifically, the

parameters defining the behavior of a CNN are learned through optimization over a set of data samples

According to the information provided during this learning phase, also referred to as training phase, we

identify different supervision paradigms, varying in terms of effectiveness and easiness of deployment

Predicted class: "dog"

Real class: "cat"

Supervision paradigms

Supervised learning: for any training sample, the correct prediction the network should give is provided

during training. In case of classification, for each image a single, correct label is required.

In case of dense prediction tasks, a single label for any pixel is required!

This paradigms allows for training CNNs at their best.

However, a CNN usually require thousands of image samples for training, thus manually annotating any

pixels in thousands images results extremely costly.

For other tasks such as depth estimation and optical flow manual annotation is unthinkable and

additional sensors are necessary (for depth estimation, LIDAR sensors are often used)

Real labels

Predicted labels

Supervision paradigms

How can we deal with data annotation in a cheap and scalable way?

We can exploit computer graphics to render countless images, together with per-pixel labels for free

However, although realistic, synthetic images are very different from real ones (in terms of noise, lights,

shadows, etc.). Thus, CNNs trained solely on synthetic images often suffer in real environments,

because of the domain shift between the two.

Supervision paradigms

Some examples:

Depth estimation (stereo)

Semantic segmentation

Solutions: strong data augmentation during training, supervised fine-tuning on a few real data, … ,

unsupervised learning

Trained on synthetic images

Trained on synthetic images

Trained on real images

Trained on real images

Supervision paradigms

Unsupervised learning: the correct prediction the network should give is not provided during training

(and, sometimes, is even unknown to the developer itself!)

For dense prediction tasks, this allows to get rid off per-pixels annotation, by demanding supervision to

mechanisms specifically designed for the task itself.

These mechanisms are known as self-supervision mechanisms and varies according to the specific

task (e.g., can leverage geometry when the task itself involve some strong geometric constraints)

Predicted labels

Self-supervision

Supervision paradigms

Example: depth estimation from a single image.

Hypothesis: given two (or more) images and their cameras relative positions, we can project pixels

across the two view if we know their depth. The same principle is exploited by algorithms estimating

depth from multiple images (as we have seen for stereo matching).

We can train a CNN to estimate depth from a single image, by i) replacing depth labels with a second

image framing the same scene and ii) minimizing the projection error enabled by estimated depth

«Self»-supervision

Image Warping

Supervision paradigms

Semi-supervised learning: the correct prediction the network should give is provided for a subset of the

training data, while for the remaining samples unsupervised learning is exploited.

An example of a semi-supervised framework could be a network jointly estimating depth and semantics,

exploiting geometry for self-supervising the depth predictions and manually annotated labels for

semantic predictions.

Predicted labels

Self-supervision

A few, real labels

What we will see next

This course will focus on

• Depth estimation:

different approaches to estimate depth from images. Single image depth estimation (data-driven),

depth from two or more images (analytical+data-driven), self-supervised techniques for depth

estimation

• Optical Flow estimation:

different approaches to estimate pixels motion, sparse versus dense. Optical flow and relationship

with 3D geometry. Analytical methods vs data-driven. Self-supervised techniques for optical flow

estimation.

• Semantic segmentation:

evolution of semantic segmentation, network architectures. Domain shift in semantic segmentation,

unsupervised adaptation approaches.

	Diapositiva 1: Deep Scene Understanding from Images for Monitoring Applications
	Diapositiva 2
	Diapositiva 3
	Diapositiva 4
	Diapositiva 5
	Diapositiva 6
	Diapositiva 7: 1- Introduction
	Diapositiva 8
	Diapositiva 9
	Diapositiva 10
	Diapositiva 11
	Diapositiva 12
	Diapositiva 13
	Diapositiva 14
	Diapositiva 15
	Diapositiva 16
	Diapositiva 17
	Diapositiva 18
	Diapositiva 19
	Diapositiva 20
	Diapositiva 21
	Diapositiva 22
	Diapositiva 23
	Diapositiva 24
	Diapositiva 25
	Diapositiva 26
	Diapositiva 27
	Diapositiva 28
	Diapositiva 29
	Diapositiva 30
	Diapositiva 31
	Diapositiva 32
	Diapositiva 33
	Diapositiva 34
	Diapositiva 35
	Diapositiva 36
	Diapositiva 37
	Diapositiva 38
	Diapositiva 39
	Diapositiva 40
	Diapositiva 41
	Diapositiva 42
	Diapositiva 43
	Diapositiva 44
	Diapositiva 45
	Diapositiva 46
	Diapositiva 47
	Diapositiva 48
	Diapositiva 49
	Diapositiva 50
	Diapositiva 51
	Diapositiva 52
	Diapositiva 53

